1
|
Hazra N, Ray R, Banerjee A. Rapid targeting and imaging of mitochondria via carbon dots using an amino acid-based amphiphile as a carrier. NANOSCALE 2024; 16:9827-9835. [PMID: 38695525 DOI: 10.1039/d4nr00665h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Green-fluorescent biocompatible carbon dots with a quantum yield of 40% were successfully synthesized through a solvothermal process and then they are comprehensively characterized. The carbon dots showed a negatively charged surface owing to the presence of carboxylic groups. This negative surface charge hinders the effective targeting and imaging of mitochondria. To address this limitation, a new approach is developed in this study. An amphiphile containing phenylalanine, with a positively charged polar head consisting of triphenylphosphine and a hydrophobic aliphatic tail, was designed, synthesized, purified, and characterized. This amphiphile formed spherical micelle-type nanostructures in an aqueous medium in the aggregated state. Although these nanoprobes lack inherent fluorescence, they exhibited the capability to image mitochondria when their spherical micelle-type nanostructures were decorated with negatively charged fluorescent nanocarbon dots in both cancerous (KB cells) and non-cancerous (CHO cells) cell lines. Notably, carbon dots without the amphiphile failed to penetrate the cell membrane as they exhibited significantly low emission inside the cell. This study extensively explored the cell entry mechanism of the hybrid nanoprobes. The photophysical changes and the interaction between the negatively charged carbon dots and the positively charged nanospheres of the amphiphile were also analyzed in this study.
Collapse
Affiliation(s)
- Niladri Hazra
- School of Biological Science, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Reeddhi Ray
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Arindam Banerjee
- School of Biological Science, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| |
Collapse
|
2
|
Ray R, Pal S, Das S, Jana NR. Direct Membrane Penetration and Cytosolic Delivery of Nanoparticles via Electrostatically Bound Amphiphiles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15819-15831. [PMID: 38517139 DOI: 10.1021/acsami.3c18750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Nanoparticles usually enter cells through energy-dependent endocytosis that involves their cytosolic entry via biomembrane-coated endosomes. In contrast, direct translocation of nanoparticles with straight access to cytosol/subcellular components without any membrane coating is limited to very selective conditions/approaches. Here we show that nanoparticles can switch from energy-dependent endocytosis to energy-independent direct membrane penetration once an amphiphile is electrostatically bound to their surface. Compared to endocytotic uptake, this direct cell translocation is faster and nanoparticles are distributed inside the cytosol without any lysosomal trafficking. We found that this direct cell translocation option is sensitive to the charges of both the nanoparticles and the amphiphile. We propose that an electrostatically bound amphiphile induces temporary opening of the cell membrane, which allows direct cell translocation of nanoparticles. This approach can be adapted for efficient subcellular targeting of nanoparticles and nanoparticle-based drug delivery application, bypassing the endosomal trapping and lysosomal degradation.
Collapse
Affiliation(s)
- Reeddhi Ray
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Suman Pal
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Soumi Das
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
3
|
Ray R, Ghosh S, Maity A, Jana NR. Arginine Surface Density of Nanoparticles Controls Nonendocytic Cell Uptake and Autophagy Induction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5451-5461. [PMID: 38265005 DOI: 10.1021/acsami.3c14472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Nonendocytic cell uptake of nanomaterials is challenging, which requires specific surface chemistry and smaller particle size. Earlier works have shown that an arginine-terminated nanoparticle of <10-20 nm size shows nonendocytic uptake via direct membrane penetration. However, the roles of surface arginine density and the arginine-arginine distance at the nanoparticle surface in controlling such nonendocytic uptake mechanism is not yet explored. Here we show that a higher arginine density at the nanoparticle surface with an arginine-arginine distance of <3 nm is the most critical aspect for such nonendocytic uptake. We have used quantum dot (QD)-based nanoparticles as a model for fluorescent tracking inside cells and for quantitative estimation of cellular uptake. We found that arginine-terminated nanoparticles of 10 nm size can opt for the energy-dependent endocytosis pathway if the arginine-arginine distance is >3 nm. In contrast, nanoparticles with <3 nm arginine-arginine distance rapidly enter into the cell via the nonendocytic approach, are freely available in the cytosol in large amounts to capture the cellular adenosine triphosphate (ATP), generate oxidative stress, and induce ATP-deficient cellular autophagy. This work shows that arginine-arginine distance at the nanoparticle surface is another fundamental parameter, along with the particle size, for the nonendocytic cell uptake of foreign materials and to control intracellular activity. This approach may be utilized in designing nanoprobes and nanocarriers with more efficient biomedical performances.
Collapse
Affiliation(s)
- Reeddhi Ray
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Santu Ghosh
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Anupam Maity
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
4
|
Shaw S, Sarkar AK, Jana NR. Protein Delivery to the Cytosol and Cell Nucleus via Micellar Nanocarrier-Based Nonendocytic Uptake. ACS APPLIED BIO MATERIALS 2023; 6:4200-4207. [PMID: 37712910 DOI: 10.1021/acsabm.3c00431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Although efficient cell nucleus delivery of exogenous materials can greatly improve their biochemical activity, this is strictly restricted by cellular uptake and intracellular trafficking processes. In the current approach, synthetic carriers are designed for cell delivery of exogenous materials via endocytosis, and nucleus delivery can be achieved via endosomal escape. Here, we demonstrate that a nonendocytic cell uptake approach can be adapted for protein delivery to the cell nucleus. We have designed a phenylboronic acid-terminated micellar carrier that can bind with protein in the presence of green tea polyphenol and deliver protein into the cytosol via the nonendocytic approach. Using this approach, four different proteins are delivered to the cytosol within 15 min, and low-molecular weight proteins are delivered to the nucleus. The designed approach can be extended for delivering macromolecular drugs to subcellular targets for a more efficient therapy.
Collapse
Affiliation(s)
- Santanu Shaw
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata700032, India
| | - Ankan Kumar Sarkar
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata700032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata700032, India
| |
Collapse
|
5
|
Swami K, Sahu BK, Nagargade M, Kaur K, Pathak AD, Shukla SK, Stobdan T, Shanmugam V. Starch wall of urea: Facile starch modification to residue-free stable urea coating for sustained release and crop productivity. Carbohydr Polym 2023; 317:121042. [PMID: 37364943 DOI: 10.1016/j.carbpol.2023.121042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
Quick leaching of urea fertilizer encourages different coatings, but achieving a stable coating without toxic linkers is still challenging. Here, the naturally abundant bio-polymer, i.e., starch, has been groomed to form a stable coating through phosphate modification and the support of eggshell nanoparticles (ESN) as a reinforcement agent. The ESN offers a calcium ion binding site for the phosphate to cause bio-mimetic folding. This coating retains hydrophilic ends in the core and gives an excellent hydrophobic surface (water contact angle 123°). Further, the phosphorylated starch+ESN led the coating to release only ∼30 % of the nutrient in the initial ten days and sustained for up to 60 days to show ∼90 % release. The stability of the coating has been attributed to its resistance to major soil factors viz., acidity and amylase degradation. The ESN also increases elasticity, cracking control, and self-repairing capacity by serving as buffer micro-bots. The coated urea enhanced the yield of rice grain by ∼10%.
Collapse
Affiliation(s)
- Kanchan Swami
- Institute of Nanoscience and Technology, Mohali, Punjab 140306, India
| | | | - Mona Nagargade
- Indian Institute of Sugarcane Research, Lucknow 226002, India
| | - Kamaljit Kaur
- Institute of Nanoscience and Technology, Mohali, Punjab 140306, India; University Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India
| | | | | | - Tsering Stobdan
- Defence Institute of High Altitude Research, Leh, Ladakh 194101, India
| | | |
Collapse
|
6
|
Sarkar AK, Shaw S, Arora H, Seth P, Jana NR. Nuclear Transport of the Molecular Drug via Nanocarrier-Based Nonendocytic Cellular Uptake. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39176-39185. [PMID: 37552859 DOI: 10.1021/acsami.3c09241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Although subcellular targeting can enhance the therapeutic performance of most drugs, such targeting requires appropriate carrier-based delivery that can bypass endosomal/lysosomal trafficking. Recent works show that nanocarriers can be designed for direct cell membrane translocation and nonendocytic uptake, bypassing the usual endocytosis processes. Here we show that this approach can be adapted for the rapid cell nucleus delivery of molecular drugs. In particular, a guanidinium-terminated nanocarrier is used to create a weak interaction-based carrier-drug nanoassembly for direct membrane translocation into the cytosol. The rapid and extensive entry of a drug-loaded nanocarrier into the cell without any vesicular coating and affinity of the drug to the nucleus allows their nucleus labeling. Compared to endocytotic uptake that requires more than hours for cell uptake followed by predominant lysosomal entrapment, this nonendocytic uptake labels the nucleus within a few minutes without any lysosomal trafficking. This approach may be utilized for nanocarrier-based subcellular targeting of drugs for more effective therapy.
Collapse
Affiliation(s)
- Ankan Kumar Sarkar
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Santanu Shaw
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Himali Arora
- Cellular and Molecular Neuroscience, National Brain Research Centre, Gurgaon, Haryana 122052, India
| | - Pankaj Seth
- Cellular and Molecular Neuroscience, National Brain Research Centre, Gurgaon, Haryana 122052, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
7
|
Pal S, de la Fuente IF, Sawant SS, Cannata JN, He W, Rouge JL. Cellular Uptake Mechanism of Nucleic Acid Nanocapsules and Their DNA-Surfactant Building Blocks. Bioconjug Chem 2023; 34:1004-1013. [PMID: 37231780 PMCID: PMC10330902 DOI: 10.1021/acs.bioconjchem.3c00104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nucleic acid nanocapsules (NANs) are enzyme-responsive DNA-functionalized micelles built for the controlled release of DNA-surfactant conjugates (DSCs) that present sequences with demonstrated therapeutic potential. Here, we investigate the mechanisms by which DSCs gain access to intracellular space in vitro and determine the effects of serum on the overall uptake and internalization mechanism of NANs. Using pharmacological inhibitors to selectively block certain pathways, we show, through confocal visualization of cellular distribution and flow cytometry quantification of total cellular association, that scavenger receptor-mediated, caveolae-dependent endocytosis is the major cellular uptake pathway of NANs in the presence and absence of serum. Furthermore, as NANs can be triggered to release DSCs by external stimuli such as enzymes, we sought to examine the uptake profile of particles degraded by enzymes prior to cell-based assays. We found that while scavenger receptor-mediated, caveolae-dependent endocytosis is still at play, energy-independent pathways as well as clathrin-mediated endocytosis are also involved. Overall, this study has helped to elucidate early steps in the cytosolic delivery and therapeutic activity of DSCs packaged into a micellular NAN platform while shedding light on the way in which DNA functionalized nanomaterials in general can be trafficked into cells both as nanostructures and as molecular entities. Importantly, our study also shows that the NAN design in particular is able to stabilize nucleic acids when delivered in the presence of serum, a critical step for effective therapeutic nucleic acid delivery.
Collapse
Affiliation(s)
- Suman Pal
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ina F de la Fuente
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shraddha S Sawant
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jenna N Cannata
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Wu He
- Flow Cytometry Facility, Center for Open Research Resources and Equipment, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jessica L Rouge
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
8
|
Ray R, Ghosh S, Panja P, Jana NR. Rapid Mitochondria Targeting by Arginine-Terminated, Sub-10 nm Nanoprobe via Direct Cell Membrane Penetration. ACS APPLIED BIO MATERIALS 2023. [PMID: 37196150 DOI: 10.1021/acsabm.3c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Although mitochondria have been identified as a potential therapeutic target for the treatment of various diseases, inefficient drug targeting to mitochondria is a major limitation for related therapeutic applications. In the current approach, drug loaded nanoscale carriers are used for mitochondria targeting via endocytic uptake. However, these approaches show poor therapeutic performance due to inefficient drug delivery to mitochondria. Here, we report a designed nanoprobe that can enter the cell via a nonendocytic approach and label mitochondria within 1 h. The designed nanoprobe is <10 nm in size and terminated with arginine/guanidinium that offers direct membrane penetration followed by mitochondria targeting. We found five specific criteria that need to be adjusted in a nanoscale material for mitochondria targeting via the nonendocytic approach. They include <10 nm size, functionalization with arginine/guanidinium, cationic surface charge, colloidal stability, and low cytotoxicity. The proposed design can be adapted for mitochondria delivery of drugs for efficient therapeutic performance.
Collapse
Affiliation(s)
- Reeddhi Ray
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Santu Ghosh
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Prasanta Panja
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
9
|
Sarkar AK, Debnath K, Arora H, Seth P, Jana NR, Jana NR. Direct Cellular Delivery of Exogenous Genetic Material and Protein via Colloidal Nano-Assemblies with Biopolymer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3199-3206. [PMID: 34985241 DOI: 10.1021/acsami.1c22009] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Direct cytosolic delivery of large biomolecules that bypass the endocytic pathways is a promising strategy for therapeutic applications. Recent works have shown that small-molecule, nanoparticle, and polymer-based carriers can be designed for direct cytosolic delivery. It has been shown that the specific surface chemistry of the carrier, nanoscale assembly between the carrier and cargo molecule, good colloidal stability, and low surface charge of the nano-assembly are critical for non-endocytic uptake processes. Here we report a guanidinium-terminated polyaspartic acid micelle for direct cytosolic delivery of protein and DNA. The polymer delivers the protein/DNA directly to the cytosol by forming a nano-assembly, and it is observed that <200 nm size of colloidal assembly with near-zero surface charge is critical for efficient cytosolic delivery. This work shows the importance of size and colloidal property of the nano-assembly for carrier-based cytosolic delivery of large biomolecules.
Collapse
Affiliation(s)
- Ankan Kumar Sarkar
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Koushik Debnath
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, College of Medicine, Chicago, Illinois 60612, United States
| | - Himali Arora
- Cellular and Molecular Neuroscience, National Brain Research Centre, Gurugram, Haryana 122052, India
| | - Pankaj Seth
- Cellular and Molecular Neuroscience, National Brain Research Centre, Gurugram, Haryana 122052, India
| | - Nihar R Jana
- School of Bioscience, Indian Institute of Technology, Kharagpur 721302, India
| | - Nikhil R Jana
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|