1
|
Tripathi N, Pérez-Sánchez G, Schaeffer N, Ray D, Aswal VK, Kuperkar K, Coutinho JAP, Bahadur P. Self-Associated Engineering in P123 Micelles Rationalizing the Role of Other Pluronics with Varying Hydrophilicity as a Mixed System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9967-9988. [PMID: 40214401 DOI: 10.1021/acs.langmuir.5c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
This study explores the atomic-level interactions of different poly(ethylene oxide) (EO)-poly(propylene oxide) (PO)-based block copolymers (BCPs), commercially known as Pluronics, with varying hydrophilicity that influences the solution behavior within Pluronic P123 micelles as a mixed system. The critical insights into the thermoresponsiveness of P123 in the presence of different Pluronics with increasing %EO content (L61, L62, L64, and F68) is hypothesized to modulate the hydrophobic interactions, leading to distinct solution textures such as clear solution (sol), blue point (BP), and cloud point (CP). The solution relative viscosity (ηrel) and rheological analysis will depict the dynamic flow behavior and expose the viscoelastic properties of the blended system. The dynamic light scattering (DLS) analysis will exhibit a temperature-dependent variation in the hydrodynamic diameter (Dh) micelle size in the examined system as a function of temperature, depicting micellar growth, while small-angle neutron scattering (SANS) will explore the intricate micellar structural dynamics in terms of size and shape using various mathematical models. Complementing these findings, transmission electron microscopy (TEM) will offer direct visualization of these micellar structures, confirming the morphological growth/transitions. Coarse-grained molecular dynamics (CG-MD) simulations will elucidate this self-assembly at the molecular scale with micelle size distributions, computed scattering intensity, density profiles, solvent-accessible surface area (SASA), diffusion coefficient (D), and mean squared displacement (MSD) profiles at elevated temperatures to uncover molecular packing and stability.
Collapse
Affiliation(s)
- Nitumani Tripathi
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat, Gujarat 395 007, India
| | - Germán Pérez-Sánchez
- Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nicolas Schaeffer
- Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, Maharashtra 400 085, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, Maharashtra 400 085, India
| | - Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat, Gujarat 395 007, India
| | - João A P Coutinho
- Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat, Gujarat 395 007, India
| |
Collapse
|
2
|
Zhang X, Lv X, Qian Z, Chen C, Mao S, Lu J, Wang Y. Template Evolution Induced Relay Self-Assembly for Mesoporous Carbonaceous Materials via Hydrothermal Carbonization. ACS NANO 2024; 18:17826-17836. [PMID: 38935973 DOI: 10.1021/acsnano.4c03744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Constructing carbonaceous materials with versatile surface structures still remains a great challenge due to limited self-assembly methods, especially at high temperatures. This study presents an innovative template evolution induced relay self-assembly (TEIRSA) for the fabrication of large polyoxometalate (POM)-mixed carbonaceous nanosheets featuring surface mesoporous structures through hydrothermal carbonization (HTC). The method employs POM and acetone as additives, cleverly modulating the Ostwald ripening-like process of P123-based micelles, effectively addressing the instability challenges inherent in traditional soft-template methods, especially within the demanding carbohydrate HTC process. Additionally, this method allows for the independent regulation of surface architectures through the selection of organic additives. The resulting nanosheets exhibit diverse surface morphologies, including surface spherical mesopores, 1D open channels, and smooth surfaces. Their unexpectedly versatile properties have swiftly garnered recognition, showing potential in the application of lithium-sulfur batteries.
Collapse
Affiliation(s)
- Xie Zhang
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Xucheng Lv
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Zikai Qian
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Chunhong Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Shanjun Mao
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Yong Wang
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
3
|
Patel D, Tripathi N, Vaswani P, Pérez-Sánchez G, Bhatia D, Kuperkar K, Coutinho JAP, Bahadur P. Role of Unimers to Polymersomes Transition in Pluronic Blends for Controlled and Designated Drug Conveyance. J Phys Chem B 2024; 128:6151-6166. [PMID: 38845485 DOI: 10.1021/acs.jpcb.4c00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
This study investigates the nanoscale self-assembly from mixtures of two symmetrical poly(ethylene oxide)-poly(propylene oxide)-pol(ethylene oxide) (PEO-PPO-PEO) block copolymers (BCPs) with different lengths of PEO blocks and similar PPO blocks. The blended BCPs (commercially known as Pluronic F88 and L81, with 80 and 10% PEO, respectively) exhibited rich phase behavior in an aqueous solution. The relative viscosity (ηrel) indicated significant variations in the flow behavior, ranging from fluidic to viscous, thereby suggesting a possible micellar growth or morphological transition. The tensiometric experiments provided insight into the intermolecular hydrophobic interactions at the liquid-air interface favoring the surface activity of mixed-system micellization. Dynamic light scattering (DLS) and small-angle neutron scattering (SANS) revealed the varied structural morphologies of these core-shell mixed micelles and polymersomes formed under different conditions. At a concentration of ≤5% w/v, Pluronic F88 exists as molecularly dissolved unimers or Gaussian chains. However, the addition of the very hydrophobic Pluronic L81, even at a much lower (<0.2%) concentration, induced micellization and promoted micellar growth/transition. These results were further substantiated through molecular dynamics (MD) simulations, employing a readily transferable coarse-grained (CG) molecular model grounded in the MARTINI force field with density and solvent-accessible surface area (SASA) profiles. These findings proved that F88 underwent micellar growth/transition in the presence of L81. Furthermore, the potential use of these Pluronic mixed micelles as nanocarriers for the anticancer drug quercetin (QCT) was explored. The spectral analysis provided insight into the enhanced solubility of QCT through the assessment of the standard free energy of solubilization (ΔG°), drug-loading efficiency (DL%), encapsulation efficiency (EE%), and partition coefficient (P). A detailed optimization of the drug release kinetics was presented by employing various kinetic models. The [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] MTT assay, a frequently used technique for assessing cytotoxicity in anticancer research, was used to gauge the effectiveness of these QCT-loaded mixed nanoaggregates.
Collapse
Affiliation(s)
- Divya Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat 395 007, Gujarat, India
| | - Nitumani Tripathi
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat 395 007, Gujarat, India
| | - Payal Vaswani
- Biomedical Engineering, Indian Institute of Technology Gandhinagar (IITGn), Palaj, Gandhinagar 382 355, Gujarat, India
| | - Germán Pérez-Sánchez
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-1933, Portugal
| | - Dhiraj Bhatia
- Biomedical Engineering, Indian Institute of Technology Gandhinagar (IITGn), Palaj, Gandhinagar 382 355, Gujarat, India
| | - Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat 395 007, Gujarat, India
| | - João A P Coutinho
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-1933, Portugal
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat 395 007, Gujarat, India
| |
Collapse
|
4
|
Bhendale M, Singh JK. Molecular Insights on Morphology, Composition, and Stability of Mixed Micelles Formed by Ionic Surfactant and Nonionic Block Copolymer in Water Using Coarse-Grained Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5031-5040. [PMID: 36992607 DOI: 10.1021/acs.langmuir.3c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The nanoscale association domains are the ultimate determinants of the macroscopic properties of complex fluids involving amphiphilic polymers and surfactants, and hence, it is foremost important to understand the role of polymer/surfactant concentration on these domains. We have used coarse-grained molecular dynamics simulations to investigate the effect of polymer/surfactant concentration on the morphology of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, i.e., pluronics or poloxamers) block copolymer, and ionic surfactants sodium dodecyl sulfate (SDS), mixed micelles in aqueous solution. The proclivity of the surfactant to form the mixed micelles is also probed using umbrella sampling simulations. In this study, we observed that the core of the pluronic + SDS formed mixed micelles consists of PPO, the alkyl tail of SDS, and some water molecules, whereas the PEO, water, and sulfate headgroups of SDS form a shell, consistent with experimental observations. The micelles are spherical at high-pluronic/low-SDS compositions, ellipsoidal at high-SDS/low-pluronic compositions, and wormlike-cylindrical at high-pluronic/high-SDS compositions. The transitions in micelle morphology are governed by the solvent accessible surface area of mixed aggregates, electrostatic repulsion between SDS-headgroups, and dehydration of PEO and PPO segments. The free energy barrier for SDS escape is much higher in mixed micelles than in pure SDS micelles, indicating a stronger tendency for SDS to form pluronic-SDS mixed micelles.
Collapse
Affiliation(s)
- Mangesh Bhendale
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Jayant K Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Prescience Insilico Private Limited, Fifth Floor, Novel MSR Building, Marathalli, Bengaluru, Karnataka 560037, India
| |
Collapse
|