1
|
Zhao H, Fan B, Hu S, Liu XL, Xue P. Recent Progress of Mechanofluorochromism and Mechanoluminescence for Phenothiazine Derivatives and Analogues. Chemistry 2025; 31:e202404195. [PMID: 39853789 DOI: 10.1002/chem.202404195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/26/2025]
Abstract
Mechanofluorochromism (MFC) and mechanoluminescence (ML) materials have garnered significant attention from researchers due to their potential applications in anti-counterfeiting, optical recording, photodynamic therapy, bioimaging, stress sensing, display technology, and ink-free printing paper. Among the various building blocks utilized in these materials, phenothiazine (PTZ) has emerged as a widely employed fundamental component owing to its distinctive electronic and optical properties as well as its facile modification capabilities. Summarizing the recent progress of PTZ derivatives and analogues in this field holds practical significance. In this review article, we classify over one hundred compounds into a few classes based on the positions of substituents and provide detailed descriptions of their contributions to MFC and ML research respectively. This comprehensive review aims to offer theoretical insights and practical examples for researchers engaged in designing and developing new phenothiazine functional materials while serving as a bridge for further exploration of MFC or ML studies.
Collapse
Affiliation(s)
- He Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, No. 393, Binshui West Road, Tianjin, 300387, P. R. China
| | - Baiyang Fan
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, No. 393, Binshui West Road, Tianjin, 300387, P. R. China
| | - Siwen Hu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, No. 393, Binshui West Road, Tianjin, 300387, P. R. China
| | - Xing Liang Liu
- School of Chemical Engineering, Qinghai University, No. 251, Ningda Road, Xining, 810016, P. R. China
| | - Pengchong Xue
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, No. 393, Binshui West Road, Tianjin, 300387, P. R. China
| |
Collapse
|
2
|
Athira P, Nelliyulla Kappumchalil R, Sachin AR, Yoosuf M, Thomas R, Gopakumar G. Intramolecular Charge Transfer and Stimuli-Responsive Emission in Cholesterol-Appended Phenothiazine-Cyanostyryl-Based Donor-Acceptor Systems. J Phys Chem A 2024; 128:3935-3946. [PMID: 38742635 DOI: 10.1021/acs.jpca.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Organic fluorescent molecules have received considerable attention owing to their various optoelectronic applications. Herein, we report the design and synthesis of two cholesterol-functionalized cyanostyrene-phenothiazine-based D-π-A systems that are emissive in both the solution and solid states. The newly synthesized cholesterol-appended phenothiazine-cyanostyrene diads PTCS-1 and PTCS-2 vary in the N-alkylation of phenothiazine, respectively, with─octyl and─hexyl chains. Both molecules are highly fluorescent and show reasonably good quantum yields in nonpolar solvents because of twisted intramolecular charge transfer (TICT). The molecules exhibit aggregation-induced emission in the solid state. Due to the presence of flexible alkyl chains in the phenothiazine and cholesterol moieties, PTCS-1 and PTCS-2 show mechanochromic luminescence switching in response to external shear stress and emission recovery under methanol vapor. Powder X-ray diffraction studies prove that the emission switching on the applied stimuli in both PTCS-1 and PTCS-2 is attributed to the reversible transformation between the crystalline and amorphous states. Time-dependent density functional theory (TD-DFT) studies are carried out to gain insight into the ICT interactions. TD-DFT analysis at the TD-M06-2X/def2-TZVP level further revealed that in both molecules, the lowest unoccupied molecular orbital (LUMO) + 2, LUMO, highest occupied molecular orbital (HOMO), and HOMO - 1 orbitals are responsible for the charge transfer interactions. These ICT interactions are identified as π-π* type interactions.
Collapse
Affiliation(s)
- Parappurath Athira
- Department of Chemistry, Farook College (Autonomous), Affiliated to University of Calicut, Kozhikode 673632, Kerala, India
| | - Ramya Nelliyulla Kappumchalil
- Department of Chemistry, Farook College (Autonomous), Affiliated to University of Calicut, Kozhikode 673632, Kerala, India
| | - Aditya Ramesh Sachin
- Homi Bhabha National Institute, Training School Complex, Anushakthinagar, Mumbai 400094, India
- Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu, India
| | - Muhammed Yoosuf
- Department of Chemistry, Farook College (Autonomous), Affiliated to University of Calicut, Kozhikode 673632, Kerala, India
| | - Reji Thomas
- Department of Chemistry, Farook College (Autonomous), Affiliated to University of Calicut, Kozhikode 673632, Kerala, India
| | - Gopinadhanpillai Gopakumar
- Homi Bhabha National Institute, Training School Complex, Anushakthinagar, Mumbai 400094, India
- Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu, India
| |
Collapse
|
3
|
Biesen L, Müller TJJ. Aroyl-S,N-Ketene Acetals: Luminous Renaissance of a Class of Heterocyclic Compounds. Chemistry 2023; 29:e202302067. [PMID: 37638792 DOI: 10.1002/chem.202302067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 08/29/2023]
Abstract
Aroyl-S,N-ketene acetals represent a peculiar class of heterocyclic merocyanines, compounds bearing pronounced and rather short dipoles with great push-pull characteristics that define their rich properties. They are accessible via a wide array of synthetic concepts and procedures, ranging from addition-elimination and condensation procedures up to rearrangement and metal-mediated reactions. With our work from 2020, aroyl-S,N-ketene acetals have been identified as powerful and promising dyes with pronounced and vastly tunable solid-state emission and aggregation-induced emission properties. One characteristic trademark of this class of dye molecules is the level of control that could be exerted, and which was thoroughly explored. Based on these results, the field was opened to extend the system to bi- and multichromophoric systems by the full toolkit of synthetic organic chemistry thus giving access to even more exciting properties and manifolded substance libraries capitalizing on the AIE properties. This review aims at outlining the reaction-based principles that allow for a swift and facile access to aroyl-S,N-ketene acetals, their methodical and structural evolution and the plethora of fluorescence and aggregation properties.
Collapse
Affiliation(s)
- Lukas Biesen
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Thomas J J Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
4
|
Zhu R, Pan Y, Yu H, Huang C, Tian H, Wang T, Xu J, Xiao S. Three Isomeric Tetraphenylethylene-pyridine Compounds: Synthesis, Crystal Structures, and Photophysical Properties. Chem Asian J 2023; 18:e202300600. [PMID: 37561069 DOI: 10.1002/asia.202300600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/11/2023]
Abstract
Many aggregation-induced emission (AIE) molecules based on tetraphenylethylene (TPE) structure have been synthesized, but a clear understanding of the photophysical difference between different isomeric pyridyl-based tetraphenylethylene molecules remains elusive. Herein, we designed a series of isomeric tetraphenylethylene-pyridines (o-Py-TPE, m-Py-TPE, p-Py-TPE) to investigate the influence of the position of N atoms in the pyridine subunit on the photophysical property of the whole molecule by detailed DFT calculations and single-crystal structures analysis. All compounds show typical AIE properties, and notably, the meta pyridyl isomer (m-Py-TPE) shows the highest solid photoluminescence quantum yield (PLQY) up to 64.56 %. Further investigation and DFT calculations indicate that the center C=C bond dihedral angles of the TPE subunit in the solid state of these compounds, which are affected by C-H⋅⋅⋅π interaction, play a vital role in their emission and PLQY properties. This work provides underlying principles for the design of pyridyl-based TPE molecules with high photoluminescent performance in the future.
Collapse
Affiliation(s)
- Rui Zhu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Yangyang Pan
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Hongbo Yu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Chengxin Huang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Hanxiao Tian
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Tian Wang
- Department of Chemistry, University of Washington, Seattle, Washington, 98195, USA
| | - Jingjing Xu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Shengxiong Xiao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
5
|
Huang T, Ji H, Yan S, Zuo Y, Li J, Lam JWY, Han C, Tang BZ. A hypochlorite-activated strategy for realizing fluorescence turn-on, type I and type II ROS-combined photodynamic tumor ablation. Biomaterials 2023; 297:122108. [PMID: 37037180 DOI: 10.1016/j.biomaterials.2023.122108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023]
Abstract
The combination of cancer cell-activated fluorescence and the advantages of both type I and type II photodynamic therapy (PDT) capabilities to achieve a synergistic therapeutic effect in a complex tumor environment is highly desirable. Herein, we report an approach by means of tumor intracellular hypochlorite (ClO-) to turn on fluorescence integrated with type I and II ROS generation for imaging-guided PDT. The resultant PTZSPy functions as a type II photosensitizer with mitochondria-targeting capability. In the presence of ClO-, PTZSPy is transformed into its oxidized counterpart SPTZSPy, turns on an orange-red fluorescence and triggers the type I ROS generation ability. Biological studies revealed that PTZSPy can accurately distinguishes tumor cells from normal cells, dynamically monitors the cell ablation process and be utilized for theranostics in MCF-7 tumor-bearing nude mice in vivo. This work provides an innovative strategy exploiting the highly abundant ClO- in tumor cells for the type I and II ROS two-pronged and imaging-guided PDT.
Collapse
Affiliation(s)
- Tonghui Huang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Heng Ji
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Shirong Yan
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yifan Zuo
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jie Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jacky W Y Lam
- The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
| | - Cuiping Han
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Ben Zhong Tang
- The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| |
Collapse
|
6
|
Huang M, Wang Z, Ma Z, Yang J. R-D-A and R-D-π-A Structured AIEgens: Relationship between Electronic, Conformational Characteristics and Photophysical Properties. J Phys Chem B 2022; 126:3082-3089. [PMID: 35417159 DOI: 10.1021/acs.jpcb.1c10834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The design of new aggregation-induced emission luminogens (AIEgens) has aroused continuous attention. The relationship between structure and performance plays an important role in guiding such efforts. In this contribution, two R-D-A- and R-D-π-A-type AIEgens were facilely designed and synthesized, that is, DPE-PTZ-CN and DPE-PTZ-PCN, with diphenylethylene as the twisted rotor structure (R), phenothiazine as electron-donor (D), and the (aryl) cyano group as electron-acceptor (A) fragments. Both luminophores were endowed with typical AIE properties, while their αAIE (PL intensity ratio of AIEgen in a mixed solution with water fraction (fw) = 90 vol % to that with fw = 0) were quite different. The αAIE for DPE-PTZ-CN was as high as 41, but it was only 3 for DPE-PTZ-PCN, in which the π-bridge (aryl linker) was introduced between its D and A groups. In addition, the push-pull electronic effect endowed both molecules with the feature of intramolecular charge transfer (ICT). The solvatochromism effect observed in solutions with different polarities confirmed the existence of the ICT process. The theoretical calculation and single crystal structure analysis revealed that the electronic structure and molecular conformation characteristics had a decisive influence on the differences in photophysical behaviors.
Collapse
Affiliation(s)
- Mingming Huang
- Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Zhijian Wang
- Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Zhiyong Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiping Yang
- Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|