1
|
Hao X, Gu Q, Isborn C, Vasquez JR, Long MP, Ye T. Quantitative measurement of cation-mediated adhesion of DNA to anionic surfaces. SOFT MATTER 2024; 20:7147-7156. [PMID: 39194357 DOI: 10.1039/d3sm01733h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Anionic polyelectrolytes, such as DNA, are attracted to anionic surfaces in the presence of multivalent cations. A major barrier toward molecular-level understanding of these attractive interactions is the paucity of measurements of the binding strength. Here, atomic force microscopy-based single molecule force spectroscopy was used to quantify the binding free energy of double-stranded DNA to an anionic surface, with complementary density functional theory calculations of the binding energies of metal ion-ligand complexes. The results support both electrostatic attraction and ion-specific binding. Our study suggests that the correlated interactions between counterions are responsible for attraction between DNA and an anionic surface, but the strength of this attraction is modulated by the identity of the metal ion. We propose a mechanism in which the strength of metal-ligand binding, as well as the preference for particular binding sites, influence both the concentration dependence and the strength of the DNA-surface interactions.
Collapse
Affiliation(s)
- Xian Hao
- Department of Chemistry and Biochemistry, School of Natural Sciences, University of California, Merced, California 95343, USA.
- School of Public Health and Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qufei Gu
- Materials and Biomaterials Science and Engineering, School of Engineering, University of California, Merced, California 95343, USA
| | - Christine Isborn
- Department of Chemistry and Biochemistry, School of Natural Sciences, University of California, Merced, California 95343, USA.
| | - Jesus Rodriguez Vasquez
- Department of Chemistry and Biochemistry, School of Natural Sciences, University of California, Merced, California 95343, USA.
| | - Makenzie Provorse Long
- Department of Chemistry and Biochemistry, Creighton University, Omaha, Nebraska 68178, USA.
| | - Tao Ye
- Department of Chemistry and Biochemistry, School of Natural Sciences, University of California, Merced, California 95343, USA.
- Materials and Biomaterials Science and Engineering, School of Engineering, University of California, Merced, California 95343, USA
| |
Collapse
|
2
|
Dommer AC, Rogers MM, Carter-Fenk KA, Wauer NA, Rubio P, Davasam A, Allen HC, Amaro RE. Interfacial Enrichment of Lauric Acid Assisted by Long-Chain Fatty Acids, Acidity and Salinity at Sea Spray Aerosol Surfaces. J Phys Chem A 2024; 128:7195-7207. [PMID: 39106367 PMCID: PMC11372753 DOI: 10.1021/acs.jpca.4c03335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Surfactant monolayers at sea spray aerosol (SSA) surfaces regulate various atmospheric processes including gas transfer, cloud interactions, and radiative properties. Most experimental studies of SSA employ a simplified surfactant mixture of long-chain fatty acids (LCFAs) as a proxy for the sea surface microlayer or SSA surface. However, medium-chain fatty acids (MCFAs) make up nearly 30% of the FA fraction in nascent SSA. Given that LCFA monolayers are easily disrupted upon the introduction of chemical heterogeneity (such as mixed chain lengths), simple FA proxies are unlikely to represent realistic SSA interfaces. Integrating experimental and computational techniques, we characterize the impact that partially soluble MCFAs have on the properties of atmospherically relevant LCFA mixtures. We explore the extent to which the MCFA lauric acid (LA) is surface stabilized by varying acidity, salinity, and monolayer composition. We also discuss the impacts of pH on LCFA-assisted LA retention, where the presence of LCFAs may shift the surface-adsorption equilibria of laurate─the conjugate base─toward higher surface activities. Molecular dynamic simulations suggest a mechanism for the enhanced surface retention of laurate. We conclude that increased FA heterogeneity at SSA surfaces promotes surface activity of soluble FA species, altering monolayer phase behavior and impacting climate-relevant atmospheric processes.
Collapse
Affiliation(s)
- Abigail C Dommer
- Department of Molecular Biology, University of California, San Diego, La Jolla, California 92093, United States
| | - Mickey M Rogers
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kimberly A Carter-Fenk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicholas A Wauer
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Patiemma Rubio
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Aakash Davasam
- Department of Molecular Biology, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Heather C Allen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Rommie E Amaro
- Department of Molecular Biology, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Lee SE, Carr AJ, Kumal RR, Uysal A. Monovalent ion-graphene oxide interactions are controlled by carboxylic acid groups: Sum frequency generation spectroscopy studies. J Chem Phys 2024; 160:084707. [PMID: 38415831 DOI: 10.1063/5.0189203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
Graphene oxide (GO) is a two-dimensional, mechanically strong, and chemically tunable material for separations. Elucidating GO-ion-water interactions at the molecular scale is highly important for predictive understanding of separation systems. However, direct observations of the nanometer region by GO surfaces under operando conditions are not trivial. Therefore, thin films of GO at the air/water interface can be used as model systems. With this approach, we study the effects of alkali metal ions on water organization near graphene oxide films at the air/water interface using vibrational sum frequency generation (SFG) spectroscopy. We also use an arachidic acid Langmuir monolayer as a benchmark for a pure carboxylic acid surface. Theoretical modeling of the concentration-dependent sum frequency signal from graphene oxide and arachidic acid surfaces reveals that the adsorption of monovalent ions is mainly controlled by the carboxylic acid groups on graphene oxide. An in-depth analysis of sum frequency spectra reveals at least three distinct water populations with different hydrogen bonding strengths. The origin of each population can be identified from concentration dependent variations of their SFG signal. Interestingly, an interfacial water structure seemed mostly insensitive to the character of the alkali cation, in contrast to similar studies conducted at the silica/water interface. However, we observed an ion-specific effect with lithium, whose strong hydration prevented direct interactions with the graphene oxide film.
Collapse
Affiliation(s)
- Seung Eun Lee
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Amanda J Carr
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Raju R Kumal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Ahmet Uysal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| |
Collapse
|
4
|
Sam S, Sung S, Kim D. Sensitive Detection of Biomolecular Adsorption by a Low-Density Surfactant Layer Using Sum-Frequency Vibrational Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17412-17419. [PMID: 38050679 DOI: 10.1021/acs.langmuir.3c02546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Small molecules or proteins interact with a biomembrane in various ways for molecular recognition, structure stabilization, and transmembrane signaling. In this study, 1,2-dipalmitoyl-3-trimethylammonium-propane (DPTAP), having a choline group, was used to investigate this interaction by using sum-frequency vibrational spectroscopy. The sum-frequency spectrum characteristic of a neat monolayer changed to that of a bare air/water interface at a larger molecular area of the DPTAP molecules due to local laser heating. Upon introduction of the aromatic molecules in the subphase at around 120 Å2 per molecule, the sum-frequency signal suddenly reappeared due to molecular adhesion, and this was utilized to probe the adsorption of the aromatic ring molecules in the water subphase to the choline headgroup of the DPTAP by cation-π interaction. The onset concentrations of this sum-frequency signal change allowed a comparison of the relative interaction strengths between different aromatic molecules. A zwitterionic surfactant molecule (DPPC) was found to interact weakly compared to the cationic DPTAP molecule.
Collapse
Affiliation(s)
- Sokhuoy Sam
- Department of Physics, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul, 04107, Korea
| | - Siheon Sung
- Department of Physics, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul, 04107, Korea
| | - Doseok Kim
- Department of Physics, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul, 04107, Korea
| |
Collapse
|
5
|
Sam S, Sung S, Krem S, Park S, Hwang DS, Kim D. Sum-Frequency Vibrational Spectroscopic Study of the Cation-π Interaction: Amine and Guanidine. J Phys Chem B 2022; 126:7621-7626. [PMID: 36166344 DOI: 10.1021/acs.jpcb.2c05709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cation-π interaction is an interaction between a positively charged cation and π electrons in an aromatic group of a molecule. It is considered to play key roles in signal transduction, stabilization of the protein structure, enzyme catalysis in biology, and wet adhesion and biomolecular condensation. In this study, octadecylguanidine hydrochloride (ODG) and octadecylamine (ODA) having guanidine and amine headgroups, respectively, are found to interact with π molecules (phenol or indole) as investigated by sum-frequency vibrational spectroscopy. ODG is unstable and does not form a neat monolayer on the water surface. However, after adding π molecules into subphase water, it becomes more stable against dissolution as evidenced by the appearance of its CHx peaks and a CH peak of the aromatic ring in the sum-frequency spectrum. Unlike ODG, ODA forms a stable monolayer on the water surface at a neutral pH. After adding π molecules into the solution, the amine-π interaction promotes the protonation of the amine headgroup and the penetration of the π molecules makes the ODA monolayer more disordered. Indole is found to be more effective in binding with the ODG as compared to phenol.
Collapse
Affiliation(s)
- Sokhuoy Sam
- Department of Physics, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - Siheon Sung
- Department of Physics, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - Sona Krem
- Department of Physics, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - Sohee Park
- Division of Environmental Science and Engineering (DESE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang 37673, Korea
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering (DESE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang 37673, Korea
| | - Doseok Kim
- Department of Physics, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| |
Collapse
|
6
|
Affiliation(s)
- Franz M Geiger
- Northwestern University, Evanston, Illinois 60208, United States
| | | |
Collapse
|