1
|
Maiti A, Erimban S, Daschakraborty S. Extreme makeover: the incredible cell membrane adaptations of extremophiles to harsh environments. Chem Commun (Camb) 2024; 60:10280-10294. [PMID: 39190300 DOI: 10.1039/d4cc03114h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The existence of life beyond Earth has long captivated humanity, and the study of extremophiles-organisms surviving and thriving in extreme environments-provides crucial insights into this possibility. Extremophiles overcome severe challenges such as enzyme inactivity, protein denaturation, and damage of the cell membrane by adopting several strategies. This feature article focuses on the molecular strategies extremophiles use to maintain the cell membrane's structure and fluidity under external stress. Key strategies include homeoviscous adaptation (HVA), involving the regulation of lipid composition, and osmolyte-mediated adaptation (OMA), where small organic molecules protect the lipid membrane under stress. Proteins also have direct and indirect roles in protecting the lipid membrane. Examining the survival strategies of extremophiles provides scientists with crucial insights into how life can adapt and persist in harsh conditions, shedding light on the origins of life. This article examines HVA and OMA and their mechanisms in maintaining membrane stability, emphasizing our contributions to this field. It also provides a brief overview of the roles of proteins and concludes with recommendations for future research directions.
Collapse
Affiliation(s)
- Archita Maiti
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801106, India.
| | - Shakkira Erimban
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801106, India.
| | | |
Collapse
|
2
|
Maiti A, Daschakraborty S. Investigating the Influence of Photoswitchable Lipids on the Structure and Dynamics of Lipid Membranes: Fundamentals and Potential Applications. J Phys Chem B 2024. [PMID: 39066711 DOI: 10.1021/acs.jpcb.4c03004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
In this work, we delve into the impact of photoisomerization of photoswitchable lipids (PSLs) on the membrane structure and dynamics at a molecular level. Through all-atom molecular dynamics simulations, we explore how UV irradiation-induced trans-to-cis isomerization of these lipids, particularly the azobenzene-derivatized phosphatidylcholine (AzoPC) lipid, influences the structure and dynamics of a simplified lipid membrane, mimicking those of E. coli bacteria across different temperatures. Our findings align with previous experimental observations regarding membrane properties and offer insights into localized effects and microscopic heterogeneity. Additionally, we estimate the relaxation time scale of the lipid membrane following AzoPC photoisomerization. Moreover, we demonstrate the feasibility of photoactivated drug release, exemplified by the controlled liberation of doxorubicin, an anticancer agent, through the membrane, suggesting the potential of PSLs in engineering photoactivated liposomes, coined as photoazosomes, for precise targeted drug delivery applications.
Collapse
Affiliation(s)
- Archita Maiti
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801106, India
| | | |
Collapse
|
3
|
Gomes I, Martins GF, Galamba N. Essential dynamics of ubiquitin in water and in a natural deep eutectic solvent. Phys Chem Chem Phys 2024; 26:18244-18255. [PMID: 38904333 DOI: 10.1039/d4cp01773k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Natural deep eutectic solvents (NADESs) comprised of osmolytes are of interest as potential biomolecular (cryo)protectants. However, the way these solvents influence the structure and dynamics of biomolecules as well as the role of water remains poorly understood. We carried out principal component analysis of various secondary structure elements of ubiquitin in water and a betaine : glycerol : water (1 : 2 : ζ; ζ = 0, 1, 2, 5, 10, 20, 45) NADES, from molecular dynamics trajectories, to gain insight into the protein dynamics as it undergoes a transition from a highly viscous anhydrous to an aqueous environment. A crossover of the protein's essential dynamics at ζ ∼ 5, induced by solvent-shell coupled fluctuations, is observed, indicating that ubiquitin might (re)fold in the NADES upon water addition at ζ > ∼5. Further, in contrast to water, the anhydrous NADES preserves ubiquitin's essential modes at high temperatures explaining the protein's seemingly enhanced thermal stability.
Collapse
Affiliation(s)
- Inês Gomes
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, C8, Campo Grande, 1749-016 Lisbon, Portugal.
| | - Gabriel F Martins
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, C8, Campo Grande, 1749-016 Lisbon, Portugal.
| | - Nuno Galamba
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, C8, Campo Grande, 1749-016 Lisbon, Portugal.
| |
Collapse
|
4
|
Kumar A, Daschakraborty S. Anomalous lateral diffusion of lipids during the fluid/gel phase transition of a lipid membrane. Phys Chem Chem Phys 2023; 25:31431-31443. [PMID: 37962400 DOI: 10.1039/d3cp04081j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A lipid membrane undergoes a phase transition from fluid to gel phase upon changing external thermodynamic conditions, such as decreasing temperature and increasing pressure. Extremophilic organisms face the challenge of preventing this deleterious phase transition. The main focus of their adaptive strategy is to facilitate effective temperature sensing through sensor proteins, relying on the drastic changes in packing density and membrane fluidity during the phase transition. Although the changes in packing density parameters due to the fluid/gel phase transition are studied in detail, the impact on membrane fluidity is less explored in the literature. Understanding the lateral diffusive dynamics of lipids in response to temperature, particularly during the fluid/gel phase transition, is albeit crucial. Here we have simulated the phase transition of a single component lipid membrane composed of dipalmitoylphosphatidylcholine (DPPC) lipids using a coarse-grained (CG) model and studied the changes of the structural and dynamical properties. It is observed that near the phase transition point, both fluid and gel phase domains coexist together. The dynamics remains highly non-Gaussian for a long time even when the mean square displacement reaches the Fickian regime at a much earlier time. This Fickian yet non-Gaussian diffusion (FnGD) is a characteristic of a highly heterogeneous system, previously observed for the lateral diffusion of lipids in raft mimetic membranes having liquid-ordered and liquid-disordered phases co-existing together. We have analyzed the molecular trajectories and calculated the jump-diffusion of the lipids, stemming from sudden jump translations, using a translational jump-diffusion (TJD) approach. An overwhelming contribution of the jump-diffusion of the lipids is observed suggesting anomalous diffusion of lipids during fluid/gel phase transition of the membrane. These results are important in unravelling the intricate nature of lipid diffusion during the phase transition of the membrane and open up a new possibility of investigating the most significant change of membrane properties during phase transition, which can be effectively sensed by proteins.
Collapse
Affiliation(s)
- Abhay Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | | |
Collapse
|
5
|
Maiti A, Kumar A, Daschakraborty S. How Do Cyclopropane Fatty Acids Protect the Cell Membrane of Escherichia coli in Cold Shock? J Phys Chem B 2023; 127:1607-1617. [PMID: 36790194 DOI: 10.1021/acs.jpcb.3c00541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The cyclopropanation of unsaturated lipid acyl chains of some bacterial cell membranes is an important survival strategy to protect the same against drastic cooling. To elucidate the role of cyclopropane ring-containing lipids, we have simulated the lipid membrane of Escherichia coli (E. coli) and two modified membranes by replacing the cyclopropane rings with either single or double bonds at widely different temperatures. It has been observed that the cyclopropane rings provide more rigid kinks in the lipid acyl chain compared to the double bonds and therefore further reduce the packing density of the membrane and subsequently enhance the membrane fluidity at low temperatures. They also inhibit the close packing of other lipids and deleterious phase separation by strongly interacting with them. Therefore, this study has explained why E. coli bacterial strain, susceptible to freezing environments, relies on the cyclopropanation of an unsaturated chain.
Collapse
Affiliation(s)
- Archita Maiti
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801106, India
| | - Abhay Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801106, India
| | | |
Collapse
|
6
|
Yokum EE, Wascher M, Goldstein DL, Krane CM. Repeated freeze-thaw cycles in freeze-tolerant treefrogs: novel interindividual variation of integrative biochemical, cellular, and organismal responses. Am J Physiol Regul Integr Comp Physiol 2023; 324:R196-R206. [PMID: 36534587 DOI: 10.1152/ajpregu.00211.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The freeze-tolerant anuran Dryophytes chrysoscelis, Cope's gray treefrog, mobilizes a complex cryoprotectant system that includes glycerol, glucose, and urea to minimize damage induced by freezing and thawing of up to 65% of body water. In this species' eastern Northern American temperate habitat, oscillations of temperature above and below freezing are common; however, the effects of repeated freezing and thawing in this species are unstudied. The biochemical and physiological effects of repeated freeze-thaw cycles were therefore evaluated and compared with cold acclimation and single freeze-thaw episodes. Glycerol was elevated in plasma, liver, and skeletal muscle of both singly and repeatedly frozen and thawed animals compared with cold-acclimated frogs. In contrast, urea was unchanged by freezing and thawing, whereas glucose was elevated in singly frozen and thawed animals but was reduced toward cold acclimation levels after repeated bouts of freezing. Overall, the cryoprotectant system was maintained, but not further elevated, in all tissues assayed in repeatedly frozen and thawed animals. For repeated freeze-thaw only, hepatic glycogen was depleted and plasma hemoglobin, indicative of erythrocyte hemolysis, increased. Postfreeze recovery of locomotor function, including limb and whole body movement, was delayed with repeated freeze-thaw and was associated with glycerol accumulation and glycogen depletion. Individuals that resumed locomotor function more quickly also accumulated greater cryoinjury. Integrated analyses of cryoprotectant and cryoinjury accumulation suggest that winter survival of D. chrysoscelis may be vulnerable to climate change, limited by carbohydrate stores, cellular repair mechanisms, and plasticity of the cryoprotectant system.
Collapse
Affiliation(s)
| | - Matthew Wascher
- Department of Mathematics, University of Dayton, Dayton, Ohio
| | - David L Goldstein
- Department of Biological Sciences, Wright State University, Dayton, Ohio
| | | |
Collapse
|
7
|
Knop JM, Mukherjee S, Jaworek MW, Kriegler S, Manisegaran M, Fetahaj Z, Ostermeier L, Oliva R, Gault S, Cockell CS, Winter R. Life in Multi-Extreme Environments: Brines, Osmotic and Hydrostatic Pressure─A Physicochemical View. Chem Rev 2023; 123:73-104. [PMID: 36260784 DOI: 10.1021/acs.chemrev.2c00491] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Elucidating the details of the formation, stability, interactions, and reactivity of biomolecular systems under extreme environmental conditions, including high salt concentrations in brines and high osmotic and high hydrostatic pressures, is of fundamental biological, astrobiological, and biotechnological importance. Bacteria and archaea are able to survive in the deep ocean or subsurface of Earth, where pressures of up to 1 kbar are reached. The deep subsurface of Mars may host high concentrations of ions in brines, such as perchlorates, but we know little about how these conditions and the resulting osmotic stress conditions would affect the habitability of such environments for cellular life. We discuss the combined effects of osmotic (salts, organic cosolvents) and hydrostatic pressures on the structure, stability, and reactivity of biomolecular systems, including membranes, proteins, and nucleic acids. To this end, a variety of biophysical techniques have been applied, including calorimetry, UV/vis, FTIR and fluorescence spectroscopy, and neutron and X-ray scattering, in conjunction with high pressure techniques. Knowledge of these effects is essential to our understanding of life exposed to such harsh conditions, and of the physical limits of life in general. Finally, we discuss strategies that not only help us understand the adaptive mechanisms of organisms that thrive in such harsh geological settings but could also have important ramifications in biotechnological and pharmaceutical applications.
Collapse
Affiliation(s)
- Jim-Marcel Knop
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Sanjib Mukherjee
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Michel W Jaworek
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Simon Kriegler
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Magiliny Manisegaran
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Zamira Fetahaj
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Lena Ostermeier
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Rosario Oliva
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany.,Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126Naples, Italy
| | - Stewart Gault
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, EH9 3FDEdinburgh, United Kingdom
| | - Charles S Cockell
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, EH9 3FDEdinburgh, United Kingdom
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| |
Collapse
|
8
|
Dong Y, Kampf N, Schilt Y, Cao W, Raviv U, Klein J. Dehydration does not affect lipid-based hydration lubrication. NANOSCALE 2022; 14:18241-18252. [PMID: 36468753 PMCID: PMC9753160 DOI: 10.1039/d2nr04799c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Phosphatidylcholine (PC) lipid bilayers at surfaces massively reduce sliding friction, via the hydration lubrication mechanism acting at their highly-hydrated phosphocholine headgroups, a central paradigm of biological lubrication, particularly at articular cartilage surfaces where low friction is crucial for joint well-being. Nanotribological measurements probed the effect on such lubrication of dehydration by dimethyl sulfoxide (DMSO), known to strongly dehydrate the phosphocholine headgroups of such PC bilayers, i.e. reduce the thickness of the inter-bilayer water layer, and thus expected to substantially degrade the hydration lubrication. Remarkably, and unexpectedly, we found that the dehydration has little effect on the friction. We used several approaches, including atomic force microscopy, small- and wide-angle X-ray scattering and all-atom molecular dynamics simulations to elucidate this. Our results show that while DMSO clearly removes hydration water from the lipid head-groups, this is offset by both higher areal head-group density and by rigidity-enhancement of the lipid bilayers, both of which act to reduce frictional dissipation. This sheds strong light on the robustness of lipid-based hydration lubrication in biological systems, despite the ubiquitous presence of bio-osmolytes which compete for hydration water.
Collapse
Affiliation(s)
- Yihui Dong
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Nir Kampf
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Yaelle Schilt
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Wei Cao
- Department of Physical Chemistry, School of Chemistry, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Jacob Klein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
9
|
Somero GN. Solutions: how adaptive changes in cellular fluids enable marine life to cope with abiotic stressors. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:389-413. [PMID: 37073170 PMCID: PMC10077225 DOI: 10.1007/s42995-022-00140-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/15/2022] [Indexed: 05/03/2023]
Abstract
The seas confront organisms with a suite of abiotic stressors that pose challenges for physiological activity. Variations in temperature, hydrostatic pressure, and salinity have potential to disrupt structures, and functions of all molecular systems on which life depends. During evolution, sequences of nucleic acids and proteins are adaptively modified to "fit" these macromolecules for function under the particular abiotic conditions of the habitat. Complementing these macromolecular adaptations are alterations in compositions of solutions that bathe macromolecules and affect stabilities of their higher order structures. A primary result of these "micromolecular" adaptations is preservation of optimal balances between conformational rigidity and flexibility of macromolecules. Micromolecular adaptations involve several families of organic osmolytes, with varying effects on macromolecular stability. A given type of osmolyte generally has similar effects on DNA, RNA, proteins and membranes; thus, adaptive regulation of cellular osmolyte pools has a global effect on macromolecules. These effects are mediated largely through influences of osmolytes and macromolecules on water structure and activity. Acclimatory micromolecular responses are often critical in enabling organisms to cope with environmental changes during their lifetimes, for example, during vertical migration in the water column. A species' breadth of environmental tolerance may depend on how effectively it can vary the osmolyte composition of its cellular fluids in the face of stress. Micromolecular adaptations remain an under-appreciated aspect of evolution and acclimatization. Further study can lead to a better understanding of determinants of environmental tolerance ranges and to biotechnological advances in designing improved stabilizers for biological materials.
Collapse
Affiliation(s)
- George N. Somero
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950 USA
| |
Collapse
|