1
|
Zhu W, Knoll P, Steinbock O. Exploring the Synthesis of Self-Organization and Active Motion. J Phys Chem Lett 2024; 15:5476-5487. [PMID: 38748082 DOI: 10.1021/acs.jpclett.4c01031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Proteins, genetic material, and membranes are fundamental to all known organisms, yet these components alone do not constitute life. Life emerges from the dynamic processes of self-organization, assembly, and active motion, suggesting the existence of similar artificial systems. Against this backdrop, our Perspective explores a variety of chemical phenomena illustrating how nonequilibrium self-organization and micromotors contribute to life-like behavior and functionalities. After explaining key terms, we discuss specific examples including enzymatic motion, diffusiophoretic and bubble-driven self-propulsion, pattern-forming reaction-diffusion systems, self-assembling inorganic aggregates, and hierarchically emergent phenomena. We also provide a roadmap for combining self-organization and active motion and discuss possible outcomes through biological analogs. We suggest that this research direction, deeply rooted in physical chemistry, offers opportunities for further development with broad impacts on related sciences and technologies.
Collapse
Affiliation(s)
- Wen Zhu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Pamela Knoll
- UK Centre for Astrobiology, School of Physics and Astronomy, Institute for Condensed Matter and Complex Systems, University of Edinburgh, Edinburgh EH9 3FD, U.K
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
2
|
Siev EA, Batista BC, Steinbock O. Coiling of Secondary Tubes Formed from the Colloidal Exhaust of Primary Chemical Gardens. J Phys Chem B 2024; 128:2028-2036. [PMID: 38378455 DOI: 10.1021/acs.jpcb.3c07840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Chemical gardens are self-organized precipitate structures such as thin-walled tubes and membrane-bound cells reminiscent of biological shapes. These usually inorganic precipitates compartmentalize the reaction system and allow the study of materials synthesis in very steep concentration gradients. We create such tubes by steadily injecting a mixture of MnCl2 and CuSO4 solutions into a large reservoir of sodium silicate solution. The growing tube is open at its tip and ejects a stream of colloidal particles that aggregate to form a secondary tube above the original one. This secondary tube can coil into a tightly wound nest-like structure, freely suspended underneath the solution-air interface. Using three-dimensional image reconstruction, we analyze the onset of coiling and show that the structure is helical with a helix radius that increases in the vertical direction. The height at which the coiling begins is lowered with each successive repeat of the growth experiment, suggesting that coiling is induced by small variations in the density of the silicate solution.
Collapse
Affiliation(s)
- Elee A Siev
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Bruno C Batista
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
3
|
Knoll P, Ouyang B, Steinbock O. Patterns Lead the Way to Far-from-Equilibrium Materials. ACS PHYSICAL CHEMISTRY AU 2024; 4:19-30. [PMID: 38283788 PMCID: PMC10811769 DOI: 10.1021/acsphyschemau.3c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 01/30/2024]
Abstract
The universe is a complex fabric of repeating patterns that unfold their beauty in system-specific diversity. The periodic table, crystallography, and the genetic code are classic examples that illustrate how even a small number of rules generate a vast range of shapes and structures. Today, we are on the brink of an AI-driven revolution that will reveal an unprecedented number of novel patterns, many of which will escape human intuition and expertise. We suggest that in the second half of the 21st century, the challenge for Physical Chemistry will be to guide and interpret these advances in the broader context of physical sciences and materials-related engineering. If we succeed in this role, Physical Chemistry will be able to extend to new horizons. In this article, we will discuss examples that strike us as particularly promising, specifically the discovery of high-entropy and far-from-equilibrium materials as well as applications to origins-of-life research and the search for life on other planets.
Collapse
Affiliation(s)
- Pamela Knoll
- School
of Physics and Astronomy, Institute for Condensed Matter and Complex
Systems, University of Edinburgh, Edinburgh EH9 3FD, U.K.
| | - Bin Ouyang
- Department
of Chemistry and Biochemistry, Florida State
University, Tallahassee, Florida 32306-4390, United States
| | - Oliver Steinbock
- Department
of Chemistry and Biochemistry, Florida State
University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
4
|
Wang Q, Steinbock O. Bobbing chemical garden tubes: oscillatory self-motion from buoyancy and catalytic gas production. SOFT MATTER 2023; 19:2138-2145. [PMID: 36876894 DOI: 10.1039/d2sm01681h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chemical reactions can induce self-propulsion by the production and ejection of gas bubbles from micro-rocket like cylindrical units. We describe related micro-submarines that change their depth in response to catalytic gas production. The structures consist of silica-supported CuO and are produced by utilizing the self-assembly rules of chemical gardens. In H2O2 solution, the tube cavity produces O2(g) and the resulting buoyancy lifts the tube to the air-solution interface, where it releases oxygen and sinks back down to the bottom of the container. In 5 cm deep solutions, the resulting bobbing cycles have a period of 20-30 s and repeat for several hours. The ascent is characterized by a vertical orientation of the tube and a constant acceleration. During the descent, the tubes are oriented horizontally and sink at a nearly constant speed. These striking features are quantitatively captured by an analysis of the involved mechanical forces and chemical kinetics. The results show that ascending tubes increase their oxygen-production rate by the motion-induced injection of fresh solution into the tube cavity.
Collapse
Affiliation(s)
- Qingpu Wang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA.
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA.
| |
Collapse
|
5
|
Patel VK, Busupalli B. Dissimilar chemobrionic growth in copper silicate chemical gardens in the absence or presence of light. Chem Commun (Camb) 2023; 59:768-771. [PMID: 36546324 DOI: 10.1039/d2cc06570c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The effect of the absence of light on chemical garden growth has been neglected although the gardens resemble hydrothermal vents that grow in dark in the sea/ocean. Herein, we report the differential growth of chemobrionic structures in copper silicate when identical reactions to yield copper silicate chemical gardens were carried out in the presence or absence of light. Irradiating the copper silicate chemical garden during its growth with different wavelengths of light independently resulted in morphologically divergent tubes.
Collapse
Affiliation(s)
- Vipul Kirtikumar Patel
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India.
| | - Balanagulu Busupalli
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India.
| |
Collapse
|
6
|
Wang Q, Steinbock O. Shape-preserving conversion of calcium carbonate tubes to self-propelled micromotors. Phys Chem Chem Phys 2022; 24:14538-14544. [PMID: 35666107 DOI: 10.1039/d2cp01807a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The self-assembly of inorganic structures beyond the euhedral shape repertoire is a powerful approach to grow hierarchically ordered materials and mesoscopic devices. The hollow precipitate tubes in chemical gardens are a classic example, which we produce on Nafion membranes separating a CaCl2-containing gel from a Na2CO3 solution. The resulting CaCO3 microtubes are conical and consist of either pure vaterite or calcite. The process also forms branched T- and Y-shaped structures. The metastable vaterite polymorph can be converted to Mn-based structures without loss of the macroscopic shape. In H2O2 solution, the resulting tubes self-propel by the release of O2 bubbles, which for branched structures causes rotation. The tubes can contain multiple bubbles which are ejected in a quasi-periodic fashion (e.g. in groups of four). The addition of surfactants causes the accumulation of bubble trails and bubble rafts that interact with the moving tubes and give rise to distinct motion patterns.
Collapse
Affiliation(s)
- Qingpu Wang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA.
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA.
| |
Collapse
|
7
|
Kumar P, Wang Q, Horváth D, Tóth Á, Steinbock O. Collective motion of self-propelled chemical garden tubes. SOFT MATTER 2022; 18:4389-4395. [PMID: 35616522 DOI: 10.1039/d2sm00395c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In H2O2 solutions, manganese-containing chemical garden tubes can self-propel due to the catalytic production and ejection of oxygen bubbles. Here, we investigate the collective behavior of these self-assembled precipitate tubes. In thin solution layers, the tubes show definite autonomous dynamics with only weak interactions that result from fluid motion around the moving units and directional changes during collisions. In thick solution layers with convex menisci forcing spatial confinement, the tubes undergo cycles of self-assembly and dispersion. This collective motion results from the rhythmic creation of a large master bubble around which the tubes align tangentially.
Collapse
Affiliation(s)
- Pawan Kumar
- Florida State University, Department of Chemistry and Biochemistry, Tallahassee, FL 32306-4390, USA.
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Qingpu Wang
- Florida State University, Department of Chemistry and Biochemistry, Tallahassee, FL 32306-4390, USA.
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Oliver Steinbock
- Florida State University, Department of Chemistry and Biochemistry, Tallahassee, FL 32306-4390, USA.
| |
Collapse
|
8
|
Kumar P, Horváth D, Tóth Á. Sol-gel transition programmed self-propulsion of chitosan hydrogel. CHAOS (WOODBURY, N.Y.) 2022; 32:063120. [PMID: 35778152 DOI: 10.1063/5.0097035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Active soft materials exhibit various dynamics ranging from boat pulsation to thin membrane deformation. In the present work, in situ prepared ethanol-containing chitosan gels propel in continuous and intermittent motion. The active life of the organic material loaded to the constant fuel level follows a linear scaling, and its maximal velocity and projection area decrease steeply with chitosan concentration. A thin propelling platelet forms at low polymer content, leading to the suppression of intermittent motion. Moreover, the fast accelerating thin gels can split into a crescent and circular-like shape or fission into multiple asymmetric fragments.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
9
|
Angelis G, Katsanou ME, Giannopoulos-Dimitriou A, Vizirianakis IS, Pampalakis G. Generation of chemobrionic jellyfishes that mechanically divide, grow and exhibit biomimetic “symbiosis”. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Georgios Angelis
- Aristotle University of Thessaloniki: Aristoteleio Panepistemio Thessalonikes Pharmacy GREECE
| | - Maria-Eleni Katsanou
- Aristoteleio Panepistimio Thessalonikis: Aristoteleio Panepistemio Thessalonikes Pharmacy GREECE
| | | | - Ioannis S. Vizirianakis
- Aristoteleio Panepistimio Thessalonikis: Aristoteleio Panepistemio Thessalonikes Pharmacy GREECE
| | - Georgios Pampalakis
- Aristotle University of Thessaloniki School of Pharmacy Pharmacy Panepistimioupolis 54124 Thessaloniki GREECE
| |
Collapse
|
10
|
Batista BC, Steinbock O. Perovskite chemical gardens: highly fluorescent microtubes from self-assembly and ion exchange. Chem Commun (Camb) 2022; 58:12736-12739. [DOI: 10.1039/d2cc05611a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the shape-preserving conversion of self-assembled CaCO3 microtubes to PbCO3 and MAPbBr3 perovskite.
Collapse
Affiliation(s)
- Bruno C. Batista
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| |
Collapse
|