1
|
Sun Q, Xu B, Du J, Yu Y, Huang Y, Deng X. Interfacial electrostatic charges promoted chemistry: Reactions and mechanisms. Adv Colloid Interface Sci 2025; 339:103436. [PMID: 39938156 DOI: 10.1016/j.cis.2025.103436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/19/2024] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
Interfacial electrostatic charges are a universal phenomenon in nature. In recent years, interest in the chemical reactivity of electrostatic charges has grown. Interfacial electrostatic charge-driven chemical synthesis reduces the reliance on redox reagents, catalysts, and hazardous solvents, which promotes environmental sustainability and cost-effectiveness in the chemical industry. Electrostatic charges can be generated at the interfaces between solids, liquids, and gases. The chemical properties of electrostatic charges have been observed at interfaces between solids and liquids, and between liquids and gases. This review summarized the chemical reactivity of interfacial electrostatic charges and its mechanisms. Electrostatic charges play a fundamental role in providing electrons and creating electric fields, which in turn induce charge transfer, radical formation, and molecular orientation. We classified the role of interfacial charges in chemical reactions and provided new perspectives. Interfacial electrostatic charges can be generated with mechanical energy input, a power supply and interface transition from solid-liquid to liquid-gas. Redox and catalytic reactions involving inorganic, organic compounds and biomolecules are driven by interfacial electrostatic charges. Electrostatic chemistry mechanisms are currently a subject of debate because there is insufficient experimental evidence. Challenges and opportunities associated with interfacial electrostatic chemistry are discussed. Knowledge of the reactivity of interfacial electrostatic charges could be used to understand electrostatic phenomena in nature, advance green chemistry, and even study the origins of life. We expect this emerging topic will appeal to scientists in disciplines including interfacial chemistry and electrostatics.
Collapse
Affiliation(s)
- Qiangqiang Sun
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| | - Boran Xu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Jinyan Du
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yunlong Yu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Yujie Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xu Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China.
| |
Collapse
|
2
|
Huo X, Li S, Sun B, Wang ZL, Wei D. Recent Progress of Chemical Reactions Induced by Contact Electrification. Molecules 2025; 30:584. [PMID: 39942688 PMCID: PMC11820200 DOI: 10.3390/molecules30030584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Contact electrification (CE) spans from atomic to macroscopic scales, facilitating charge transfer between materials upon contact. This interfacial charge exchange, occurring in solid-solid (S-S) or solid-liquid (S-L) systems, initiates radical generation and chemical reactions, collectively termed contact-electro-chemistry (CE-Chemistry). As an emerging platform for green chemistry, CE-Chemistry facilitates redox, luminescent, synthetic, and catalytic reactions without the need for external power sources as in traditional electrochemistry with noble metal catalysts, significantly reducing energy consumption and environmental impact. Despite its broad applicability, the mechanistic understanding of CE-Chemistry remains incomplete. In S-S systems, CE-Chemistry is primarily driven by surface charges, whether electrons, ions, or radicals, on charged solid interfaces. However, a comprehensive theoretical framework is yet to be established. While S-S CE offers a promising platform for exploring the interplay between chemical reactions and triboelectric charge via surface charge modulation, it faces significant challenges in achieving scalability and optimizing chemical efficiency. In contrast, S-L CE-Chemistry focuses on interfacial electron transfer as a critical step in radical generation and subsequent reactions. This approach is notably versatile, enabling bulk-phase reactions in solutions and offering the flexibility to choose various solvents and/or dielectrics to optimize reaction pathways, such as the degradation of organic pollutants and polymerization, etc. The formation of an interfacial electrical double layer (EDL), driven by surface ion adsorption following electron transfer, plays a pivotal role in CE-Chemical processes within aqueous S-L systems. However, the EDL can exert a screening effect on further electron transfer, thereby inhibiting reaction progress. A comprehensive understanding and optimization of charge transfer mechanisms are pivotal for elucidating reaction pathways and enabling precise control over CE-Chemical processes. As the foundation of CE-Chemistry, charge transfer underpins the development of energy-efficient and environmentally sustainable methodologies, holding transformative potential for advancing green innovation. This review consolidates recent advancements, systematically classifying progress based on interfacial configurations in S-S and S-L systems and the underlying charge transfer dynamics. To unlock the full potential of CE-Chemistry, future research should prioritize the strategic tuning of material electronegativity, the engineering of sophisticated surface architectures, and the enhancement of charge transport mechanisms, paving the way for sustainable chemical innovations.
Collapse
Affiliation(s)
- Xinyi Huo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; (X.H.); (S.L.)
- School of Science, China University of Geosciences, Beijing 100083, China;
| | - Shaoxin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; (X.H.); (S.L.)
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Sun
- School of Science, China University of Geosciences, Beijing 100083, China;
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; (X.H.); (S.L.)
| | - Di Wei
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; (X.H.); (S.L.)
- Centre for Photonic Devices and Sensors, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| |
Collapse
|
3
|
Wang Z, Dong X, Tang W, Wang ZL. Contact-electro-catalysis (CEC). Chem Soc Rev 2024; 53:4349-4373. [PMID: 38619095 DOI: 10.1039/d3cs00736g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Contact-electro-catalysis (CEC) is an emerging field that utilizes electron transfer occurring at the liquid-solid and even liquid-liquid interfaces because of the contact-electrification effect to stimulate redox reactions. The energy source of CEC is external mechanical stimuli, and solids to be used are generally organic as well as in-organic materials even though they are chemically inert. CEC has rapidly garnered extensive attention and demonstrated its potential for both mechanistic research and practical applications of mechanocatalysis. This review aims to elucidate the fundamental principle, prominent features, and applications of CEC by compiling and analyzing the recent developments. In detail, the theoretical foundation for CEC, the methods for improving CEC, and the unique advantages of CEC have been discussed. Furthermore, we outline a roadmap for future research and development of CEC. We hope that this review will stimulate extensive studies in the chemistry community for investigating the CEC, a catalytic process in nature.
Collapse
Affiliation(s)
- Ziming Wang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuanli Dong
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Tang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA
| |
Collapse
|
4
|
Li T, Peiris CR, Aragonès AC, Hurtado C, Kicic A, Ciampi S, MacGregor M, Darwish T, Darwish N. Terminal Deuterium Atoms Protect Silicon from Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47833-47844. [PMID: 37768872 DOI: 10.1021/acsami.3c11598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
In recent years, the hybrid silicon-molecular electronics technology has been gaining significant attention for applications in sensors, photovoltaics, power generation, and molecular electronics devices. However, Si-H surfaces, which are the platforms on which these devices are formed, are prone to oxidation, compromising the mechanical and electronic stability of the devices. Here, we show that when hydrogen is replaced by deuterium, the Si-D surface becomes significantly more resistant to oxidation when either positive or negative voltages are applied to the Si surface. Si-D surfaces are more resistant to oxidation, and their current-voltage characteristics are more stable than those measured on Si-H surfaces. At positive voltages, the Si-D stability appears to be related to the flat band potential of Si-D being more positive compared to Si-H surfaces, making Si-D surfaces less attractive to oxidizing OH- ions. The limited oxidation of Si-D surfaces at negative potentials is interpreted by the frequencies of the Si-D bending modes being coupled to that of the bulk Si surface phonon modes, which would make the duration of the Si-D excited vibrational state significantly less than that of Si-H. The strong surface isotope effect has implications in the design of silicon-based sensing, molecular electronics, and power-generation devices and the interpretation of charge transfer across them.
Collapse
Affiliation(s)
- Tiexin Li
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Chandramalika R Peiris
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Albert C Aragonès
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Marti i Franquès 1, 08028 Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTC), Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Carlos Hurtado
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, Bentley, Western Australia 6102, Australia
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Western Australia 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Melanie MacGregor
- Flinders Institute for Nanoscale Science & Technology, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Tamim Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, New South Wales 2234, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
5
|
Zhang J, Lin S, Wang ZL. Triboelectric Nanogenerator Array as a Probe for In Situ Dynamic Mapping of Interface Charge Transfer at a Liquid-Solid Contacting. ACS NANO 2023; 17:1646-1652. [PMID: 36602519 DOI: 10.1021/acsnano.2c11633] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Contact between water droplets with hydrophobic surfaces is a common phenomenon at functional interfaces, and it has been extensively studied. However, quantifying the charge transfer between the liquid-solid interfacial contacting, especially for the charge density distribution throughout the movement of liquid droplet on a dielectric surface, remains to be investigated. Here, we developed a pixeled droplet triboelectric nanogenerator (pixeled droplet-TENG) array with high-density electrode array as a probe for measuring the charge transfer at a liquid-solid interface when a water drop moves on the hydrophobic surface. To intuitively observe the charge transfer between the liquid-solid interface, we "imaged" the transferred charges along movement trajectory of a water droplet as it slides along a tilted solid surface at a spatial resolution of 0.4 mm and time sensitivity of 0.02 s. Our study shows that the transferred charges are not uniformly distributed along the path, which is possibly due to the two-step model of electron transfer and ion adsorbed on the solid surface, and thus the formation of an electric double layer will inevitably shield the net surface on the solid surface. Our study presents a probe technology with potential applications in surface chemistry, physics, material science, and cell biology.
Collapse
Affiliation(s)
- Jinyang Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shiquan Lin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|