1
|
Yadav VK, Pramanik S, Alghamdi S, Atwah B, Qusty NF, Babalghith AO, Solanki VS, Agarwal N, Gupta N, Niazi P, Patel A, Choudhary N, Zairov R. Therapeutic Innovations in Nanomedicine: Exploring the Potential of Magnetotactic Bacteria and Bacterial Magnetosomes. Int J Nanomedicine 2025; 20:403-444. [PMID: 39816378 PMCID: PMC11734620 DOI: 10.2147/ijn.s462031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/07/2024] [Indexed: 01/18/2025] Open
Abstract
Nanotechnology has emerged as a revolutionary domain with diverse applications in medicine, and one of the noteworthy developments is the exploration of bacterial magnetosomes acquired from magnetotactic bacteria (MTB) for therapeutic purposes. The demand for natural nanomaterials in the biomedical field is continuously increasing due to their biocompatibility and eco-friendly nature. MTB produces uniform, well-ordered magnetic nanoparticles inside the magnetosomes, drawing attention due to their unique and remarkable features. MTB and magnetosomes have gained popularity in cancer treatment and diagnosis, especially in magnetic resonance imaging. Distinctive features highlighted include advancements in extraction, characterization, and functionalization techniques, alongside breakthroughs in utilizing MTB-based magnetosomes as contrast agents in imaging, biocompatible drug carriers, and tools for minimally invasive therapies. The biocompatible nature, functionalizing of the surface of bacterial magnetosomes, and response to the external magnetic field make them a potential candidate for the theragnostic purpose of MTB and magnetosomes. In the present review, emphasis has been given to the foundation of magnetosomes at a genetic level, mass production of magnetosomes, etc. Further authors have reviewed the various functionalization methods of the magnetosomes for cancer treatment. Finally, the authors have reviewed the recent advancements in MTB and magnetosome-based cancer detection, diagnosis, and treatment. Challenges such as scalability, long-term safety, and clinical translation are also discussed, presenting a roadmap for future research exploiting MTBs and magnetosomes' unique properties.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Banan Atwah
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naeem F Qusty
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Vijendra Singh Solanki
- Department of Chemistry, Institute of Science and Research (ISR), IPS Academy, Indore, India
| | - Neha Agarwal
- Department of Chemistry, Navyug Kanya Mahavidyalaya, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Nishant Gupta
- Department of Engineering and Medical Devices, River Engineering Pvt Ltd, Ecotech-III, Greater Noida, U.p., India
| | - Parwiz Niazi
- Department of Biology, Faculty of Education, Kandahar University, Kandahar, Afghanistan
| | - Ashish Patel
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Nisha Choudhary
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Rustem Zairov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center RAS, Kazan, Russian Federation
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|
2
|
Amor M, Mosselmans JFW, Scoppola E, Li C, Faivre D, Chevrier DM. Crystal-Chemical and Biological Controls of Elemental Incorporation into Magnetite Nanocrystals. ACS NANO 2023; 17:927-939. [PMID: 36595434 DOI: 10.1021/acsnano.2c05469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Magnetite nanoparticles possess numerous fundamental, biomedical, and industrial applications, many of which depend on tuning the magnetic properties. This is often achieved by the incorporation of trace and minor elements into the magnetite lattice. Such incorporation was shown to depend strongly on the magnetite formation pathway (i.e., abiotic vs biological), but the mechanisms controlling element partitioning between magnetite and its surrounding precipitation solution remain to be elucidated. Here, we used a combination of theoretical modeling (lattice and crystal field theories) and experimental evidence (high-resolution inductively coupled plasma-mass spectrometry and X-ray absorption spectroscopy) to demonstrate that element incorporation into abiotic magnetite nanoparticles is controlled principally by cation size and valence. Elements from the first series of transition metals (Cr to Zn) constituted exceptions to this finding, as their incorporation appeared to be also controlled by the energy levels of their unfilled 3d orbitals, in line with crystal field mechanisms. We finally show that element incorporation into biological magnetite nanoparticles produced by magnetotactic bacteria (MTB) cannot be explained by crystal-chemical parameters alone, which points to the biological control exerted by the bacteria over the element transfer between the MTB growth medium and the intracellular environment. This screening effect generates biological magnetite with a purer chemical composition in comparison to the abiotic materials formed in a solution of similar composition. Our work establishes a theoretical framework for understanding the crystal-chemical and biological controls of trace and minor cation incorporation into magnetite, thereby providing predictive methods to tailor the composition of magnetite nanoparticles for improved control over magnetic properties.
Collapse
Affiliation(s)
- Matthieu Amor
- Aix-Marseille Université, CEA, CNRS, BIAM, 13108Saint-Paul-lez-Durance, France
| | | | - Ernesto Scoppola
- Biomaterials, Hierarchical Structure of Biological and Bio-inspired Materials, Max Planck Institute of Colloids and Interfaces, Potsdam14476, Germany
| | - Chenghao Li
- Biomaterials, Hierarchical Structure of Biological and Bio-inspired Materials, Max Planck Institute of Colloids and Interfaces, Potsdam14476, Germany
| | - Damien Faivre
- Aix-Marseille Université, CEA, CNRS, BIAM, 13108Saint-Paul-lez-Durance, France
| | - Daniel M Chevrier
- Aix-Marseille Université, CEA, CNRS, BIAM, 13108Saint-Paul-lez-Durance, France
| |
Collapse
|
3
|
Shi R, Dong Z, Ma C, Wu R, Lv R, Liu S, Ren Y, Liu Z, van der Mei HC, Busscher HJ, Liu J. High-Yield, Magnetic Harvesting of Extracellular Outer-Membrane Vesicles from Escherichia coli. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204350. [PMID: 36269872 DOI: 10.1002/smll.202204350] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Extracellular outer-membrane vesicles (OMVs) are attractive for use as drug nanocarriers, because of their high biocompatibility and ability to enter cells. However, widespread use is hampered by low yields. Here, a high-yield method for magnetic harvesting of OMVs from Escherichia coli is described. To this end, E. coli are grown in the presence of magnetic iron-oxide nanoparticles (MNPs). Uptake of MNPs by E. coli is low and does not increase secretion of OMVs. Uptake of MNPs can be enhanced through PEGylation of MNPs. E. coli growth in the presence of PEGylated MNPs increases bacterial MNP-uptake and OMV-secretion, accompanied by upregulation of genes involved in OMV-secretion. OMVs containing MNPs can be magnetically harvested at 60-fold higher yields than achieved by ultracentrifugation. Functionally, magnetically-harvested OMVs and OMVs harvested by ultracentrifugation are both taken-up in similar numbers by bacteria. Uniquely, in an applied magnetic field, magnetically-harvested OMVs with MNPs accumulate over the entire depth of an infectious biofilm. OMVs harvested by ultracentrifugation without MNPs only accumulate near the biofilm surface. In conclusion, PEGylation of MNPs is essential for their uptake in E. coli and yields magnetic OMVs allowing high-yield magnetic-harvesting. Moreover, magnetic OMVs can be magnetically targeted to a cargo delivery site in the human body.
Collapse
Affiliation(s)
- Rui Shi
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, P. R. China
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Ziliang Dong
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, P. R. China
| | - Chongqing Ma
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, P. R. China
| | - Renfei Wu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, P. R. China
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Rui Lv
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, P. R. China
| | - Sidi Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, P. R. China
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Yijin Ren
- Department of Orthodontics, University of Groningen and University Medical Center of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, P. R. China
| | - Henny C van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Henk J Busscher
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|