1
|
Layek S, Hazra R, Mishra S, Sarkar N. Inhibition and Modulation of the Self-Assembly of Single Amino Acids and Dipeptides in the Presence of Chitosan-Derived Fluorescent Nanographene Oxide: Dye-Based White Light Generation in Micellar Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8637-8646. [PMID: 40112023 DOI: 10.1021/acs.langmuir.4c05152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Fluorescent carbon nanoparticles from various biomass and biowastes can be very much useful. In this work, we have successfully synthesized fluorescent carbon dot-type nanographene oxide (nGO). The emission properties of these nGOs were modulated in the presence of different stimuli and aqueous binary mixtures. Further, we have seen that nGOs showed aggregation-induced quenching in the presence of cationic surfactant up to its premicellar concentration. Two lipophilic dyes in micellar media can also generate excellent white light in combination with these nGOs. Further, fluorescence imaging showed that these nGOs could inhibit the usual self-assembly of l-tyrosine, L-tryptophan, and diphenylalanine and modulate the self-assembly of l-methionine and aspartame. Therefore, these nGOs have potential use in light-emitting and therapeutic applications.
Collapse
Affiliation(s)
- Souvik Layek
- Department of Chemistry, Indian Institute of Technology, Kharagpur, WB 721302, India
| | - Ritwik Hazra
- Department of Chemistry, Indian Institute of Technology, Kharagpur, WB 721302, India
| | - Shreya Mishra
- Department of Chemistry, National Institute of Science Education and Research, Bhubaneswar, Odisha 752050, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur, WB 721302, India
| |
Collapse
|
2
|
Bilog M, Cersosimo J, Vigil I, Desamero RZB, Profit AA. Effect of a SARS-CoV-2 Protein Fragment on the Amyloidogenic Propensity of Human Islet Amyloid Polypeptide. ACS Chem Neurosci 2024; 15:4431-4440. [PMID: 39582236 PMCID: PMC11660541 DOI: 10.1021/acschemneuro.4c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the onset of COVID-19 have been linked to an increased risk of developing type 2 diabetes. While a variety of mechanisms may ultimately be responsible for the onset of type 2 diabetes under these circumstances, one mechanism that has been postulated involves the increased aggregation of human islet amyloid polypeptide (hIAPP) through direct interaction with SARS-CoV-2 viral proteins. Previous computational studies investigating this possibility revealed that a nine-residue peptide fragment known as SK9 (SFYVYSRVK) from the SARS-CoV-2 envelope protein can stabilize the native conformation of hIAPP1-37 by interacting with the N-terminal region of amylin. One of the areas particularly stabilized through this interaction encompasses residues 15-28 of amylin. Given these findings, we investigated whether SK9 could interact with short amyloidogenic sequences derived from this region of amylin. Here, we employ docking studies, molecular dynamics simulations, and biophysical techniques to provide theoretical as well as direct experimental evidence that SK9 can interact with hIAPP12-18 and hIAPP20-29 peptides. Furthermore, we demonstrate that SK9 not only can interact with these sequences but also serves to prevent the self-assembly of these amyloidogenic peptides. In striking contrast, we also show that SK9 has little effect on the amyloidogenic propensity of full-length amylin. These findings are contrary to previous published simulations involving SK9 and hIAPP1-37. Such observations may assist in clarifying potential mechanisms of the SARS-CoV-2 interaction with hIAPP and its relevance to the onset of type 2 diabetes in the setting of COVID-19.
Collapse
Affiliation(s)
- Marvin Bilog
- PhD
Programs in Chemistry and Biochemistry, the Graduate Center of the
City University of New York, New
York, New York 10016, United States
- Department
of Chemistry, York College of the City University
of New York, Jamaica, New York 11451, United States
| | - Jennifer Cersosimo
- PhD
Programs in Chemistry and Biochemistry, the Graduate Center of the
City University of New York, New
York, New York 10016, United States
- Department
of Chemistry, York College of the City University
of New York, Jamaica, New York 11451, United States
| | - Iliana Vigil
- Department
of Chemistry, York College of the City University
of New York, Jamaica, New York 11451, United States
| | - Ruel Z. B. Desamero
- PhD
Programs in Chemistry and Biochemistry, the Graduate Center of the
City University of New York, New
York, New York 10016, United States
- Department
of Chemistry, York College of the City University
of New York, Jamaica, New York 11451, United States
| | - Adam A. Profit
- PhD
Programs in Chemistry and Biochemistry, the Graduate Center of the
City University of New York, New
York, New York 10016, United States
- Department
of Chemistry, York College of the City University
of New York, Jamaica, New York 11451, United States
| |
Collapse
|
3
|
St Dollente Mesias V, Zhang J, Zhu H, Dai X, Li J, Huang J. Distinct Effects of SARS-CoV-2 Protein Segments on Structural Stability, Amyloidogenic Potential, and α-Synuclein Aggregation. Chembiochem 2024; 25:e202400598. [PMID: 39480569 DOI: 10.1002/cbic.202400598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Amyloidosis is characterized by the abnormal accumulation of misfolded proteins, called amyloid fibrils, leading to diverse clinical manifestations. Recent studies on the amyloidogenesis of SARS-CoV-2 protein segments have raised concerns on their potential link to post-infection neurodegeneration, however, the mechanisms remain unclear. Herein, we investigated the structure, stability, and amyloidogenic propensity of a nine-residue segment (SK9) of the SARS-CoV-2 envelope protein and their impact on neuronal protein α-synuclein (αSyn) aggregation. Specifically, the amino acid sequence of the SK9 wildtype has been modified from a basic and positively charged peptide (SFYVYSRVK), to a nearly neutral and more hydrophobic peptide (SAAVASAVK, labelled as SK9 var1), and to an acidic and negatively charged peptide (SDAVANAVK, labelled as SK9 var2). Our findings reveal that the SK9 wildtype exhibited a pronounced amyloidogenic propensity due to its disordered and unstable nature, while the SK9 variants possessed more ordered and stable structures preventing the amyloid formation. Significantly, the SK9 wildtype demonstrated distinct effect on αSyn aggregation kinetics and aggregate morphology to facilitate the formation of αSyn aggregates with enhanced resistance against enzymatic degradation. This study highlights the potential of modifying short peptide sequences to fine-tune their properties, providing insights into understanding and regulating viral-induced amyloid aggregations.
Collapse
Affiliation(s)
- Vince St Dollente Mesias
- Department of Chemistry, The, Hong Kong University of Science and Technology, Clearwater Bay Road, Kowloon, Hong Kong SAR, China
| | - Jianing Zhang
- Department of Chemistry, The, Hong Kong University of Science and Technology, Clearwater Bay Road, Kowloon, Hong Kong SAR, China
| | - Hongni Zhu
- Department of Chemistry, The, Hong Kong University of Science and Technology, Clearwater Bay Road, Kowloon, Hong Kong SAR, China
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xin Dai
- Department of Chemistry, The, Hong Kong University of Science and Technology, Clearwater Bay Road, Kowloon, Hong Kong SAR, China
| | - Jixi Li
- School of Life Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200438, China
| | - Jinqing Huang
- Department of Chemistry, The, Hong Kong University of Science and Technology, Clearwater Bay Road, Kowloon, Hong Kong SAR, China
| |
Collapse
|
4
|
Zhang J, Mesias VSD, Chesney AD, Anand VK, Feng X, Hsing IM, Hansmann UHE, Huang J. Differential effects of SARS-CoV-2 amyloidogenic segments on the aggregation and toxicity of human islet amyloid polypeptide within membrane environments. Int J Biol Macromol 2024; 283:137930. [PMID: 39579816 DOI: 10.1016/j.ijbiomac.2024.137930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Human islet amyloid polypeptide (hIAPP), an intrinsically disordered protein (IDP), plays a significant role in the pathogenesis of type 2 diabetes through its aggregation. Recent studies have suggested that certain viral protein segments exhibit amyloidogenic potential and may influence its amyloid aggregations associated with pathogenesis. However, the potential link between recurrent SARS-CoV-2 infections and the exacerbation of type 2 diabetes remains poorly understood. In this study, we explore how the amyloidogenic segments of SARS-CoV-2, specifically SK9 and FI10, influence the aggregation of hIAPP and the toxicity of the resulting conformers in a membrane environment. To investigate this, we utilized a range of biophysical techniques, including circular dichroism, nuclear magnetic resonance, atomic force microscopy, dynamic light scattering, fluorescence assays, and cell cytotoxicity assays, complemented by molecular dynamics simulations. Our results indicate that SK9 and FI10 promote hIAPP aggregation in a membrane-mimicking environment, forming distinct aggregate structures. Specifically, SK9 accelerates rapid fibril formation due to inter-chain interactions, while FI10 stabilizes oligomeric aggregates primarily through intra-chain contacts. These results reveal the differential effects of viral protein segments on amyloid formation pathways and aggregate characteristics, providing new insights into the mechanisms of amyloid aggregation for developing better therapeutic strategies against amyloid-associated diseases, particularly diabetes.
Collapse
Affiliation(s)
- Jianing Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Vince St Dollente Mesias
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Andrew D Chesney
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, OK 73019, United States
| | - Vignesh K Anand
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, OK 73019, United States
| | - Xianzhen Feng
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - I-Ming Hsing
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ulrich H E Hansmann
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, OK 73019, United States.
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
5
|
Jana AK, Keskin R, Yaşar F. Molecular Insight into the Effect of HIV-TAT Protein on Amyloid-β Peptides. ACS OMEGA 2024; 9:27480-27491. [PMID: 38947850 PMCID: PMC11209880 DOI: 10.1021/acsomega.4c02643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Increased deposition of amyloid-β (Aβ) plaques in the brain is a frequent pathological feature observed in human immunodeficiency virus (HIV)-positive patients. Emerging evidence indicates that HIV regulatory proteins, particularly the transactivator of transcription (TAT) protein, could interact with Aβ peptide, accelerating the formation of Aβ plaques in the brain and potentially contributing to the onset of Alzheimer's disease in individuals with HIV infection. Nevertheless, the molecular mechanisms underlying these processes remain unclear. In the present study, we have used long all-atom molecular dynamics simulations to probe the direct interactions between the TAT protein and Aβ peptide at the molecular level. Sampling over 28.0 μs, our simulations show that TAT protein induces a shift in the Aβ monomer ensemble toward elongated conformations, exposing aggregation-prone regions on the surface and thereby inducing subsequent aggregation. TAT protein also appears to enhance the stability of preformed Aβ fibrils, while increasing the β-sheet content within these fibrils. Our atomistically detailed simulations qualitatively agree with previous in vitro and in vivo studies. Importantly, our simulations identify key interactions between Aβ and the TAT protein that drive the Aβ aggregation process and stabilize the preformed Aβ aggregates, which are particularly challenging to obtain through current experimental techniques.
Collapse
Affiliation(s)
- Asis K. Jana
- Department
of Microbiology and Biotechnology, Sister
Nivedita University, Kolkata 700156, India
| | - Recep Keskin
- Department
of Physics Engineering, Hacettepe University, Ankara 06800, Türkiye
| | - Fatih Yaşar
- Department
of Physics Engineering, Hacettepe University, Ankara 06800, Türkiye
| |
Collapse
|
6
|
Wang J, Dai L, Chen S, Zhang Z, Fang X, Zhang Z. Protein-protein interactions regulating α-synuclein pathology. Trends Neurosci 2024; 47:209-226. [PMID: 38355325 DOI: 10.1016/j.tins.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/15/2023] [Accepted: 01/21/2024] [Indexed: 02/16/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the formation of Lewy bodies (LBs). The main proteinaceous component of LBs is aggregated α-synuclein (α-syn). However, the mechanisms underlying α-syn aggregation are not yet fully understood. Converging lines of evidence indicate that, under certain pathological conditions, various proteins can interact with α-syn and regulate its aggregation. Understanding these protein-protein interactions is crucial for unraveling the molecular mechanisms contributing to PD pathogenesis. In this review we provide an overview of the current knowledge on protein-protein interactions that regulate α-syn aggregation. Additionally, we briefly summarize the methods used to investigate the influence of protein-protein interactions on α-syn aggregation and propagation.
Collapse
Affiliation(s)
- Jiannan Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Sichun Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xin Fang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China.
| |
Collapse
|
7
|
Coppola F, Pavlíček T, Král P. Coupling of SARS-CoV-2 to Aβ Amyloid Fibrils. ACS OMEGA 2024; 9:9295-9299. [PMID: 38434865 PMCID: PMC10905702 DOI: 10.1021/acsomega.3c08481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
The COVID-19 infection has been more problematic for individuals with certain health predispositions. Coronaviruses could also interfere with neural diseases if the viruses succeed in entering the brain. Therefore, it might be of principal interest to examine a possible coupling of coronaviruses and amyloid fibrils. Here, molecular dynamics simulations were used to investigate direct coupling of SARS-CoV-2 and Aβ fibrils, which play a central role in neural diseases. The simulations revealed several stable binding configurations and their dynamics of Aβ42 fibrils attached to spike proteins of the Omicron and Alpha variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Francesco Coppola
- Department
of Chemistry, University of Illinois at
Chicago, Chicago, Illinois 60607, United States
| | - Tomáš Pavlíček
- Institute
of Evolution, University of Haifa, Haifa 3498838, Israel
| | - Petr Král
- Departments
of Chemistry, Physics, Pharmaceutical Sciences, and Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
8
|
Lan PD, Nissley DA, O’Brien EP, Nguyen TT, Li MS. Deciphering the free energy landscapes of SARS-CoV-2 wild type and Omicron variant interacting with human ACE2. J Chem Phys 2024; 160:055101. [PMID: 38310477 PMCID: PMC11223169 DOI: 10.1063/5.0188053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/08/2024] [Indexed: 02/05/2024] Open
Abstract
The binding of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein to the host cell receptor angiotensin-converting enzyme 2 (ACE2) is the first step in human viral infection. Therefore, understanding the mechanism of interaction between RBD and ACE2 at the molecular level is critical for the prevention of COVID-19, as more variants of concern, such as Omicron, appear. Recently, atomic force microscopy has been applied to characterize the free energy landscape of the RBD-ACE2 complex, including estimation of the distance between the transition state and the bound state, xu. Here, using a coarse-grained model and replica-exchange umbrella sampling, we studied the free energy landscape of both the wild type and Omicron subvariants BA.1 and XBB.1.5 interacting with ACE2. In agreement with experiment, we find that the wild type and Omicron subvariants have similar xu values, but Omicron binds ACE2 more strongly than the wild type, having a lower dissociation constant KD.
Collapse
Affiliation(s)
| | - Daniel A. Nissley
- Department of Statistics, University of Oxford, Oxford Protein Bioinformatics Group, Oxford OX1 2JD, United Kingdom
| | | | - Toan T. Nguyen
- Key Laboratory for Multiscale Simulation of Complex Systems and Department of Theoretical Physics, Faculty of Physics, University of Science, Vietnam National University - Hanoi, 334 Nguyen Trai Street, Thanh Xuan District, Hanoi 11400, Vietnam
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
9
|
Zilio G, Masato A, Sandre M, Caregnato A, Moret F, Maciola AK, Antonini A, Brucale M, Cendron L, Plotegher N, Bubacco L. SARS-CoV-2-Mimicking Pseudoviral Particles Accelerate α-Synuclein Aggregation In Vitro. ACS Chem Neurosci 2024; 15:215-221. [PMID: 38131609 DOI: 10.1021/acschemneuro.3c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Since the SARS-CoV-2 virus started spreading worldwide, evidence pointed toward an impact of the infection on the nervous system. COVID-19 patients present neurological manifestations and have an increased risk of developing brain-related symptoms in the long term. In fact, evidence in support of the neuroinvasive potential of SARS-CoV-2 has emerged. Considering that viral parkisonism was observed as a consequence of encephalopathies caused by viral infections, it has been already suggested that COVID-19 could affect the dopaminergic neurons and contribute to neurodegeneration in Parkinson's disease (PD), by promoting the formation of amyloid fibrils constituted by the PD-related protein α-synuclein. Here, we observe not only that SARS-CoV-2 viral spike protein and nucleocapsid protein can alone promote α-synuclein aggregation but also that the spike protein organization in a corona shape on the viral envelope may be crucial in triggering fast amyloid fibrils formation, thus possibly contributing to PD pathogenesis.
Collapse
Affiliation(s)
- Gianluca Zilio
- Department of Biology, University of Padova, Padova 35131, Italy
| | - Anna Masato
- Department of Biology, University of Padova, Padova 35131, Italy
| | - Michele Sandre
- Department of Biology, University of Padova, Padova 35131, Italy
- Department of Neuroscience, University of Padova, Padova 35121, Italy
| | - Alberto Caregnato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Francesca Moret
- Department of Biology, University of Padova, Padova 35131, Italy
| | | | - Angelo Antonini
- Department of Neuroscience, University of Padova, Padova 35121, Italy
| | - Marco Brucale
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Bologna 40129, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, Padova 35131, Italy
| | | | - Luigi Bubacco
- Department of Biology, University of Padova, Padova 35131, Italy
| |
Collapse
|
10
|
Limanaqi F, Zecchini S, Saulle I, Strizzi S, Vanetti C, Garziano M, Cappelletti G, Parolin D, Caccia S, Trabattoni D, Fenizia C, Clerici M, Biasin M. Alpha-synuclein dynamics bridge Type-I Interferon response and SARS-CoV-2 replication in peripheral cells. Biol Res 2024; 57:2. [PMID: 38191441 PMCID: PMC10775536 DOI: 10.1186/s40659-023-00482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Increasing evidence suggests a double-faceted role of alpha-synuclein (α-syn) following infection by a variety of viruses, including SARS-CoV-2. Although α-syn accumulation is known to contribute to cell toxicity and the development and/or exacerbation of neuropathological manifestations, it is also a key to sustaining anti-viral innate immunity. Consistently with α-syn aggregation as a hallmark of Parkinson's disease, most studies investigating the biological function of α-syn focused on neural cells, while reports on the role of α-syn in periphery are limited, especially in SARS-CoV-2 infection. RESULTS Results herein obtained by real time qPCR, immunofluorescence and western blot indicate that α-syn upregulation in peripheral cells occurs as a Type-I Interferon (IFN)-related response against SARS-CoV-2 infection. Noteworthy, this effect mostly involves α-syn multimers, and the dynamic α-syn multimer:monomer ratio. Administration of excess α-syn monomers promoted SARS-CoV-2 replication along with downregulation of IFN-Stimulated Genes (ISGs) in epithelial lung cells, which was associated with reduced α-syn multimers and α-syn multimer:monomer ratio. These effects were prevented by combined administration of IFN-β, which hindered virus replication and upregulated ISGs, meanwhile increasing both α-syn multimers and α-syn multimer:monomer ratio in the absence of cell toxicity. Finally, in endothelial cells displaying abortive SARS-CoV-2 replication, α-syn multimers, and multimer:monomer ratio were not reduced following exposure to the virus and exogenous α-syn, suggesting that only productive viral infection impairs α-syn multimerization and multimer:monomer equilibrium. CONCLUSIONS Our study provides novel insights into the biology of α-syn, showing that its dynamic conformations are implicated in the innate immune response against SARS-CoV-2 infection in peripheral cells. In particular, our results suggest that promotion of non-toxic α-syn multimers likely occurs as a Type-I IFN-related biological response which partakes in the suppression of viral replication. Further studies are needed to replicate our findings in neuronal cells as well as animal models, and to ascertain the nature of such α-syn conformations.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy.
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, Milan, Italy
| | - Sergio Strizzi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Micaela Garziano
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, Milan, Italy
| | - Gioia Cappelletti
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Debora Parolin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Sonia Caccia
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi, 20148, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy.
| |
Collapse
|
11
|
Mercado G, Kaeufer C, Richter F, Peelaerts W. Infections in the Etiology of Parkinson's Disease and Synucleinopathies: A Renewed Perspective, Mechanistic Insights, and Therapeutic Implications. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1301-1329. [PMID: 39331109 PMCID: PMC11492057 DOI: 10.3233/jpd-240195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Increasing evidence suggests a potential role for infectious pathogens in the etiology of synucleinopathies, a group of age-related neurodegenerative disorders including Parkinson's disease (PD), multiple system atrophy and dementia with Lewy bodies. In this review, we discuss the link between infections and synucleinopathies from a historical perspective, present emerging evidence that supports this link, and address current research challenges with a focus on neuroinflammation. Infectious pathogens can elicit a neuroinflammatory response and modulate genetic risk in PD and related synucleinopathies. The mechanisms of how infections might be linked with synucleinopathies as well as the overlap between the immune cellular pathways affected by virulent pathogens and disease-related genetic risk factors are discussed. Here, an important role for α-synuclein in the immune response against infections is emerging. Critical methodological and knowledge gaps are addressed, and we provide new future perspectives on how to address these gaps. Understanding how infections and neuroinflammation influence synucleinopathies will be essential for the development of early diagnostic tools and novel therapies.
Collapse
Affiliation(s)
- Gabriela Mercado
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher Kaeufer
- Center for Systems Neuroscience, Hannover, Germany
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wouter Peelaerts
- Laboratory for Virology and Gene Therapy, Department of Pharmacy and Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Kubra B, Badshah SL, Faisal S, Sharaf M, Emwas AH, Jaremko M, Abdalla M. Inhibition of the predicted allosteric site of the SARS-CoV-2 main protease through flavonoids. J Biomol Struct Dyn 2023; 41:9103-9120. [PMID: 36404610 DOI: 10.1080/07391102.2022.2140201] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/19/2022] [Indexed: 11/22/2022]
Abstract
Since its emergence in 2019, coronavirus infection (COVID-19) has become a global pandemic and killed several million people worldwide. Even though several types of vaccines are available against the COVID-19 virus, SARS-CoV-2, new strains are emerging that pose a constant danger to vaccine effectiveness. In this computational study, we identified and predicted potent allosteric inhibitors of the SARS-CoV-2 main protease (Mpro). Via molecular docking and simulations, more than 100 distinct flavonoids were docked with the allosteric site of Mpro. Docking experiments revealed four top hit compounds (Hesperidin, Schaftoside, Brickellin, and Marein) that bound strongly to the Mpro predicted allosteric site. Simulation analyses further revealed that these continually interacted with the enzyme's allosteric region throughout the simulation time. ADMET and Lipinski drug likenesses were calculated to indicate the therapeutic value of the top four hits: They were non-toxic and exhibited high human intestinal absorption concentrations. These novel allosteric site inhibitors provide a higher chance of drugging SARS-CoV2 Mpro due to the rapid mutation rate of the viral enzyme's active sites. Our findings provide a new avenue for developing novel allosteric inhibitors of SARS-CoV-2 Mpro.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bibi Kubra
- Department of Chemistry, Islamia College University Peshawar, Peshawar, Pakistan
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar, Pakistan
| | - Shah Faisal
- Department of Chemistry, Islamia College University Peshawar, Peshawar, Pakistan
| | - Mohamed Sharaf
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, PR China
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
13
|
Cao S, Song Z, Rong J, Andrikopoulos N, Liang X, Wang Y, Peng G, Ding F, Ke PC. Spike Protein Fragments Promote Alzheimer's Amyloidogenesis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40317-40329. [PMID: 37585091 PMCID: PMC10480042 DOI: 10.1021/acsami.3c09815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Alzheimer's disease (AD) is a major cause of dementia inducing memory loss, cognitive decline, and mortality among the aging population. While the amyloid aggregation of peptide Aβ has long been implicated in neurodegeneration in AD, primarily through the production of toxic polymorphic aggregates and reactive oxygen species, viral infection has a less explicit role in the etiology of the brain disease. On the other hand, while the COVID-19 pandemic is known to harm human organs and function, its adverse effects on AD pathobiology and other human conditions remain unclear. Here we first identified the amyloidogenic potential of 1058HGVVFLHVTYV1068, a short fragment of the spike protein of SARS-CoV-2 coronavirus. The peptide fragment was found to be toxic and displayed a high binding propensity for the amyloidogenic segments of Aβ, thereby promoting the aggregation and toxicity of the peptide in vitro and in silico, while retarding the hatching and survival of zebrafish embryos upon exposure. Our study implicated SARS-CoV-2 viral infection as a potential contributor to AD pathogenesis, a little explored area in our quest for understanding and overcoming Long Covid.
Collapse
Affiliation(s)
- Sujian Cao
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| | - Zhiyuan Song
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Jinyu Rong
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Nicholas Andrikopoulos
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Xiufang Liang
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China
| | - Yue Wang
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China
| | - Guotao Peng
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Pu Chun Ke
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
14
|
Chesney AD, Maiti B, Hansmann UHE. SARS-COV-2 spike protein fragment eases amyloidogenesis of α-synuclein. J Chem Phys 2023; 159:015103. [PMID: 37409768 PMCID: PMC10328560 DOI: 10.1063/5.0157331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Parkinson's disease is accompanied by the presence of amyloids in the brain that are formed of α-synuclein chains. The correlation between COVID-19 and the onset of Parkinson's disease led to the idea that amyloidogenic segments in SARS-COV-2 proteins can induce aggregation of α-synuclein. Using molecular dynamic simulations, we show that the fragment FKNIDGYFKI of the spike protein, which is unique for SARS-COV-2, preferentially shifts the ensemble of α-synuclein monomer toward rod-like fibril seeding conformations and, at the same time, differentially stabilizes this polymorph over the competing twister-like structure. Our results are compared with earlier work relying on a different protein fragment that is not specific for SARS-COV-2.
Collapse
Affiliation(s)
- Andrew D. Chesney
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Buddhadev Maiti
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Ulrich H. E. Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
15
|
Chesney AD, Maiti B, Hansmann UHE. SARS-COV-2 Spike Protein Fragment eases Amyloidogenesis of α-Synuclein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539715. [PMID: 37214999 PMCID: PMC10197603 DOI: 10.1101/2023.05.06.539715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Parkinson's Disease is accompanied by presence of amyloids in the brain formed of α-synuclein chains. Correlation between COVID-19 and the onset of Parkinson's disease let to the idea that amyloidogenic segments in SARS-COV-2 proteins can induce aggregation of α-synuclein. Using molecular dynamic simulations, we show that the fragment FKNIDGYFKI of the spike protein, which is unique for SARS-COV-2, shifts preferentially the ensemble of α-synuclein monomer towards rod-like fibril seeding conformations, and at the same time stabilizes differentially this polymorph over the competing twister-like structure. Our results are compared with earlier work relying on a different protein fragment that is not specific for SARS-COV-2.
Collapse
|
16
|
Chesney A, Maiti B, Hansmann UH. Human Amylin in the Presence of SARS-COV-2 Protein Fragments. ACS OMEGA 2023; 8:12501-12511. [PMID: 37033831 PMCID: PMC10077547 DOI: 10.1021/acsomega.3c00621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/13/2023] [Indexed: 05/30/2023]
Abstract
COVID-19 can lead to the onset of type-II diabetes, which is associated with the aggregation of islet amyloid polypeptides, also called amylin. Using molecular dynamics simulations, we investigate how the equilibrium between amylin monomers in its functional form and fibrils associated with diabetes is altered in the presence of SARS-COV-2 protein fragments. For this purpose, we study the interaction between the fragment SFYVYSRVK of the envelope protein or the fragment FKNIDGYFKI of the spike protein with the monomer and two amylin fibril models. Our results are compared with earlier work studying such interactions for the two different proteins.
Collapse
|
17
|
Chesney AD, Maiti B, Hansmann UHE. Human Amylin in the Presence of SARS-COV-2 Protein Fragments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526275. [PMID: 36778414 PMCID: PMC9915464 DOI: 10.1101/2023.01.30.526275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Covid-19 can lead to the onset of type-II diabetes which is associated with aggregation of islet amyloid polypeptides, also called amylin. Using molecular dynamics simulations, we investigate how the equilibrium, between amylin monomers in its functional form and fibrils associated with diabetes, is altered in presence of SARS-COV-2 protein fragments. For this purpose, we study the interaction between the fragment SFYVYSRVK of the Envelope protein or the fragment FKNIDGYFKI of the Spike protein with the monomer and two amylin fibril models. Our results are compared with earlier work studying such interactions for two different proteins.
Collapse
|
18
|
Russo MJ, MacLeod K, Lamoureux J, Lebovitz R, Pleshkevich M, Steriade C, Wisniewski T, Frontera JA, Kang UJ. Aggregation-Seeding Forms of α-Synuclein Are Not Detected in Acute Coronavirus Disease 2019 Cerebrospinal Fluid. Mov Disord 2022; 37:2462-2463. [PMID: 36208476 PMCID: PMC9874726 DOI: 10.1002/mds.29240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 01/28/2023] Open
Affiliation(s)
- Marco J. Russo
- The Marlene and Paolo Fresco Institute for Parkinson's & Movement Disorders, Departments of Neurology and Neuroscience and Physiology, Neuroscience Institute, The Parekh Center for Interdisciplinary NeurologyNYU Grossman School of MedicineNew YorkNew YorkUSA
- Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | | | | | | | - Maria Pleshkevich
- Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
- NYU Comprehensive Epilepsy CenterNew York UniversityNew YorkNew YorkUSA
| | - Claude Steriade
- Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
- NYU Comprehensive Epilepsy CenterNew York UniversityNew YorkNew YorkUSA
| | - Thomas Wisniewski
- Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
- Departments of Neurology, Pathology, and Psychiatry, Center for Cognitive NeurologyNYU Langone Medical CenterNew YorkNew YorkUSA
| | - Jennifer A. Frontera
- Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Un Jung Kang
- The Marlene and Paolo Fresco Institute for Parkinson's & Movement Disorders, Departments of Neurology and Neuroscience and Physiology, Neuroscience Institute, The Parekh Center for Interdisciplinary NeurologyNYU Grossman School of MedicineNew YorkNew YorkUSA
- Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| |
Collapse
|
19
|
Mesias VD, Zhu H, Tang X, Dai X, Liu W, Guo Y, Huang J. Moderate Binding between Two SARS-CoV-2 Protein Segments and α-Synuclein Alters Its Toxic Oligomerization Propensity Differently. J Phys Chem Lett 2022; 13:10642-10648. [PMID: 36354180 PMCID: PMC9662073 DOI: 10.1021/acs.jpclett.2c02278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/31/2022] [Indexed: 06/01/2023]
Abstract
The neurological symptoms of long COVID and viral neuroinvasion have raised concerns about the potential interactions between SARS-CoV-2 protein segments and neuronal proteins, which might confer a risk of post-infection neurodegeneration, but the underlying mechanisms remain unclear. Here, we reported that the receptor-binding domain (RBD) of the spike protein and the nine-residue segment (SK9) of the envelope protein could bind to α-synuclein (αSyn) with Kd values of 503 ± 24 nM and 12.7 ± 1.6 μM, respectively. RBD could inhibit αSyn fibrillization by blocking the non-amyloid-β component region and mediating its antiparallel β-sheet structural conversions. Omicron-RBD (BA.5) was shown to have a slightly stronger affinity for αSyn (Kd = 235 ± 10 nM), which implies similar effects, whereas SK9 may bind to the C-terminus which accelerates the formation of parallel β-sheet-containing oligomers and abruptly increases the rate of membrane disruption by 213%. Our results provide plausible molecular insights into the impact of SARS-CoV-2 post-infection and the oligomerization propensity of αSyn that is associated with Parkinson's disease.
Collapse
Affiliation(s)
- Vince
St. Dollente Mesias
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Hongni Zhu
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Xiao Tang
- Division
of Life Science, The Hong Kong University
of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Xin Dai
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Wei Liu
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Yusong Guo
- Division
of Life Science, The Hong Kong University
of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jinqing Huang
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Hong Kong 999077, China
| |
Collapse
|
20
|
Nandi S, Mukhopadhyay A, Nandi PK, Bera N, Hazra R, Chatterjee J, Sarkar N. Amyloids Formed by Nonaromatic Amino Acid Methionine and Its Cross with Phenylalanine Significantly Affects Phospholipid Vesicle Membrane: An Insight into Hypermethioninemia Disorder. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8252-8265. [PMID: 35758025 DOI: 10.1021/acs.langmuir.2c00648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The incorrect metabolic breakdown of the nonaromatic amino acid methionine (Met) leads to the disorder called hypermethioninemia via an unknown mechanism. To understand the molecular level pathogenesis of this disorder, we prepared a DMPC lipid membrane, the mimicking setup of the cell membrane, and explored the effect of the millimolar level of Met on it. We found that Met forms toxic fibrillar aggregates that disrupt the rigidity of the membrane bilayer, and increases the dynamic response of water molecules surrounding the membrane as well as the heterogeneity of the membrane. Such aggregates strongly deform red blood cells. This opens the requirement to consider therapeutic antagonists either to resist or to inhibit the toxic amyloid aggregates against hypermethioninemia. Moreover, such disrupting effect on membrane bilayer and cytotoxicity along with deformation effect on RBC by the cross amyloids of Met and Phenylalanine (Phe) was found to be most virulent. This exclusive observation of the enhanced virulent effect of the cross amyloids is expected to be an informative asset to explain the coexistence of two amyloid disorders.
Collapse
|