1
|
Enomoto K, Torisu T, Mizuguchi J, Tanoue R, Uchiyama S. Structure of Human Serum Albumin at a Foam Surface. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8774-8783. [PMID: 38587054 DOI: 10.1021/acs.jafc.3c09357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Proteins can be adsorbed on the air-water interface (AWI), and the structural changes in proteins at the AWI are closely related to the foaming properties of foods and beverages. However, how these structural changes in proteins at the AWI occur is not well understood. We developed a method for the structural assessment of proteins in the foam state using hydrogen/deuterium exchange mass spectrometry. Adsorption sites and structural changes in human serum albumin (HSA) were identified in situ at the peptide-level resolution. The N-terminus and the loop (E492-T506), which contains hydrophobic amino acids, were identified as adsorption sites. Both the structural flexibility and hydrophobicity were considered to be critical factors for the adsorption of HSA at the AWI. Structural changes in HSA were observed after more than one minute of foaming and were spread widely throughout the structure. These structural changes at the foam AWI were reversible.
Collapse
Affiliation(s)
- Kanta Enomoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuo Torisu
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Junya Mizuguchi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryosuke Tanoue
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Exploratory Research Center on Life andLiving Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
2
|
Chen X, Roeters SJ, Cavanna F, Alvarado J, Baiz CR. Crowding alters F-actin secondary structure and hydration. Commun Biol 2023; 6:900. [PMID: 37660224 PMCID: PMC10475093 DOI: 10.1038/s42003-023-05274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023] Open
Abstract
Actin, an important component of eukaryotic cell cytoskeleton, regulates cell shape and transport. The morphology and biochemical properties of actin filaments are determined by their structure and protein-protein contacts. Crowded environments can organize filaments into bundles, but less is known about how they affect F-actin structure. This study used 2D IR spectroscopy and spectral calculations to examine how crowding and bundling impact the secondary structure and local environments in filaments and weakly or strongly bundled networks. The results reveal that bundling induces changes in actin's secondary structure, leading to a decrease in β-sheet and an increase in loop conformations. Strongly bundled networks exhibit a decrease in backbone solvent exposure, with less perturbed α-helices and nearly "locked" β-sheets. Similarly, the loops become less hydrated but maintain a dynamic environment. These findings highlight the role of loop structure in actin network morphology and stability under morphology control by PEG.
Collapse
Affiliation(s)
- Xiaobing Chen
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA
| | - Steven J Roeters
- Department of Chemistry, Aarhus University, Aarhus, Denmark
- Department of Anatomy and Neurosciences, Vrije Universiteit, Amsterdam UMC, Amsterdam, Netherlands
| | - Francis Cavanna
- Department of Physics, University of Texas at Austin, Center for Nonlinear Dynamics, Austin, TX, USA
| | - José Alvarado
- Department of Physics, University of Texas at Austin, Center for Nonlinear Dynamics, Austin, TX, USA
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
3
|
Rozak H, Nihonyanagi S, Myalitsin A, Roy S, Ahmed M, Tahara T, Rzeznicka II. Adsorption of SARS-CoV-2 Spike (N501Y) RBD to Human Angiotensin-Converting Enzyme 2 at a Lipid/Water Interface. J Phys Chem B 2023; 127:4406-4414. [PMID: 37171105 DOI: 10.1021/acs.jpcb.3c00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The receptor binding domain (RBD) of spike proteins plays a crucial role in the process of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) attachment to the human angiotensin-converting enzyme 2 (ACE2). The N501Y mutation and later mutations introduced extra positive charges on the spike RBD and resulted in higher transmissibility, likely due to stronger binding with the highly negatively charged ACE2. Consequently, many studies have been devoted to understanding the molecular mechanism of spike protein binding with the ACE2 receptor. Most of the theoretical studies, however, have been done on isolated proteins. ACE2 is a transmembrane protein; thus, it is important to understand the interaction of spike proteins with ACE2 in a lipid matrix. In this study, the adsorption of ACE2 and spike (N501Y) RBD at a lipid/water interface was studied using the heterodyne-detected vibrational sum frequency generation (HD-VSFG) technique. The technique is a non-linear optical spectroscopy which measures vibrational spectra of molecules at an interface and provides information on their structure and orientation. It is found that ACE2 is effectively adsorbed at the positively charged 1,2-dipalmitoyl-3-trimethylammonium-propane (DPTAP) lipid monolayer via electrostatic interactions. The adsorption of ACE2 at the DPTAP monolayer causes a reorganization of interfacial water (D2O) from the D-down to the D-up orientation, indicating that the originally positively charged DPTAP interface becomes negatively charged due to ACE2 adsorption. The negatively charged interface (DPTAP/ACE2) allows further adsorption of positively charged spike RBD. HD-VSFG spectra in the amide I region show differences for spike (N501Y) RBD adsorbed at D2O, DPTAP, and DPTAP/ACE2 interfaces. A red shift observed for the spectra of spike RBD/DPTAP suggests that spike RBD oligomers are formed upon contact with DPTAP lipids.
Collapse
Affiliation(s)
- Harison Rozak
- College of Engineering, Shibaura Institute of Technology, Saitama City, Saitama 337-8570, Japan
| | - Satoshi Nihonyanagi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Anton Myalitsin
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- ANVOS Analytics Co., 4-168 Motomachi, Naka-ku, Yokohama, Kanagawa 231-0861, Japan
| | - Subhadip Roy
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mohammed Ahmed
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Izabela I Rzeznicka
- College of Engineering, Shibaura Institute of Technology, Saitama City, Saitama 337-8570, Japan
| |
Collapse
|
4
|
Guo W, Lu T, Crisci R, Nagao S, Wei T, Chen Z. Determination of protein conformation and orientation at buried solid/liquid interfaces. Chem Sci 2023; 14:2999-3009. [PMID: 36937592 PMCID: PMC10016606 DOI: 10.1039/d2sc06958j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Protein structures at solid/liquid interfaces mediate interfacial protein functions, which are important for many applications. It is difficult to probe interfacial protein structures at buried solid/liquid interfaces in situ at the molecular level. Here, a systematic methodology to determine protein molecular structures (orientation and conformation) at buried solid/liquid interfaces in situ was successfully developed with a combined approach using a nonlinear optical spectroscopic technique - sum frequency generation (SFG) vibrational spectroscopy, isotope labeling, spectra calculation, and computer simulation. With this approach, molecular structures of protein GB1 and its mutant (with two amino acids mutated) were investigated at the polymer/solution interface. Markedly different orientations and similar (but not identical) conformations of the wild-type protein GB1 and its mutant at the interface were detected, due to the varied molecular interfacial interactions. This systematic strategy is general and can be widely used to elucidate protein structures at buried interfaces in situ.
Collapse
Affiliation(s)
- Wen Guo
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor 48109 Michigan USA
| | - Tieyi Lu
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor 48109 Michigan USA
| | - Ralph Crisci
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor 48109 Michigan USA
| | - Satoshi Nagao
- Graduate School of Science, University of Hyogo 3-2-1 Koto, Ako-gun Kamigouri-cho Hyogo 678-1297 Japan
| | - Tao Wei
- Department of Chemical Engineering, Howard University 2366 Sixth Street NW Washington 20059 DC USA
| | - Zhan Chen
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor 48109 Michigan USA
| |
Collapse
|