1
|
Piranej S, Ogasawara H, Zhang L, Jackson K, Bazrafshan A, Salaita K. On-Demand Photoactivation of DNA-Based Motor Motion. ACS NANO 2025; 19:5363-5375. [PMID: 39883883 PMCID: PMC11823613 DOI: 10.1021/acsnano.4c13068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 02/01/2025]
Abstract
A major challenge in the field of synthetic motors relates to mimicking the precise, on-demand motion of biological motor proteins, which mediates processes such as cargo transport, cell locomotion, and cell division. To address this challenge, we developed a system to control the motion of DNA-based synthetic motors using light. DNA motors are composed of a central chassis particle modified with DNA "legs" that hybridize to RNA "fuel", and move upon enzymatic consumption of RNA. We first concealed RNA fuel sites using photocleavable oligonucleotides that block DNA leg binding. Upon UV activation, the RNA blocking strands dissociate, exposing the RNA fuel and initiating active, directional motion. We also created a "brake" system using photocleavable DNA stalling strands, anchoring the motors until UV light removes the "brake" while simultaneously "fueling" the motors, initiating spatiotemporally controlled stop → go motion. Additionally, we modified the "brake" system to activate the motors via a chemical input, while an optical input is required to fuel the motors. This dual-input approach, functioning as an "AND" gate, demonstrates the potential for DNA motors to perform light-triggered computational tasks. Our work provides a proof of concept for enhancing the complexity and functionality of synthetic motors.
Collapse
Affiliation(s)
- Selma Piranej
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Hiroaki Ogasawara
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Luona Zhang
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Krista Jackson
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Alisina Bazrafshan
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
2
|
Piranej S, Zhang L, Bazrafshan A, Marin M, Melikian GB, Salaita K. Rolosense: Mechanical Detection of SARS-CoV-2 Using a DNA-Based Motor. ACS CENTRAL SCIENCE 2024; 10:1332-1347. [PMID: 39071064 PMCID: PMC11273449 DOI: 10.1021/acscentsci.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 07/30/2024]
Abstract
Assays that detect viral infections play a significant role in limiting the spread of diseases such as SARS-CoV-2. Here, we present Rolosense, a virus sensing platform that leverages the motion of 5 μm DNA-based motors on RNA fuel chips to transduce the presence of viruses. Motors and chips are modified with aptamers, which are designed for multivalent binding to viral targets and lead to stalling of motion. Therefore, the motors perform a "mechanical test" of the viral target and stall in the presence of whole virions, which represents a unique mechanism of transduction distinct from conventional assays. Rolosense can detect SARS-CoV-2 spiked in artificial saliva and exhaled breath condensate with a sensitivity of 103 copies/mL and discriminates among other respiratory viruses. The assay is modular and amenable to multiplexing, as demonstrated by our one-pot detection of influenza A and SARS-CoV-2. As a proof of concept, we show that readout can be achieved using a smartphone camera with a microscopic attachment in as little as 15 min without amplification reactions. Taken together, these results show that mechanical detection using Rolosense can be broadly applied to any viral target and has the potential to enable rapid, low-cost point-of-care screening of circulating viruses.
Collapse
Affiliation(s)
- Selma Piranej
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Luona Zhang
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Alisina Bazrafshan
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Mariana Marin
- Department
of Pediatrics, Emory University School of
Medicine, Atlanta, Georgia 30322, United States
- Children’s
Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Gregory B. Melikian
- Department
of Pediatrics, Emory University School of
Medicine, Atlanta, Georgia 30322, United States
- Children’s
Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
3
|
Zhang L, Piranej S, Namazi A, Narum S, Salaita K. "Turbo-Charged" DNA Motors with Optimized Sequence Enable Single-Molecule Nucleic Acid Sensing. Angew Chem Int Ed Engl 2024; 63:e202316851. [PMID: 38214887 PMCID: PMC10947818 DOI: 10.1002/anie.202316851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/13/2024]
Abstract
DNA motors that consume chemical energy to generate processive mechanical motion mimic natural motor proteins and have garnered interest due to their potential applications in dynamic nanotechnology, biosensing, and drug delivery. Such motors translocate by a catalytic cycle of binding, cleavage, and rebinding between DNA "legs" on the motor body and RNA "footholds" on a track. Herein, we address the well-documented trade-off between motor speed and processivity and investigate how these parameters are controlled by the affinity between DNA legs and their complementary footholds. Specifically, we explore the role of DNA leg length and GC content in tuning motor performance by dictating the rate of leg-foothold dissociation. Our investigations reveal that motors with 0 % GC content exhibit increased instantaneous velocities of up to 150 nm/sec, three-fold greater than previously reported DNA motors and comparable to the speeds of biological motor proteins. We also demonstrate that the faster speed and weaker forces generated by 0 % GC motors can be leveraged for enhanced capabilities in sensing. We observe single-molecule sensitivity when programming the motors to stall in response to the binding of nucleic acid targets. These findings offer insights for the design of high-performance DNA motors with promising real-world biosensing applications.
Collapse
Affiliation(s)
- Luona Zhang
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Selma Piranej
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Arshiya Namazi
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Steven Narum
- Wallace H. Coulter Department of Biomedical Engineering, Georgia, Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia, Institute of Technology and Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Korosec CS, Unksov IN, Surendiran P, Lyttleton R, Curmi PMG, Angstmann CN, Eichhorn R, Linke H, Forde NR. Motility of an autonomous protein-based artificial motor that operates via a burnt-bridge principle. Nat Commun 2024; 15:1511. [PMID: 38396042 PMCID: PMC10891099 DOI: 10.1038/s41467-024-45570-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Inspired by biology, great progress has been made in creating artificial molecular motors. However, the dream of harnessing proteins - the building blocks selected by nature - to design autonomous motors has so far remained elusive. Here we report the synthesis and characterization of the Lawnmower, an autonomous, protein-based artificial molecular motor comprised of a spherical hub decorated with proteases. Its "burnt-bridge" motion is directed by cleavage of a peptide lawn, promoting motion towards unvisited substrate. We find that Lawnmowers exhibit directional motion with average speeds of up to 80 nm/s, comparable to biological motors. By selectively patterning the peptide lawn on microfabricated tracks, we furthermore show that the Lawnmower is capable of track-guided motion. Our work opens an avenue towards nanotechnology applications of artificial protein motors.
Collapse
Affiliation(s)
- Chapin S Korosec
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
- Department of Mathematics and Statistics, York University, Toronto, ON, M3J 1P3, Canada.
| | - Ivan N Unksov
- NanoLund and Solid State Physics, Lund University, Box 118, SE - 22100, Lund, Sweden
| | - Pradheebha Surendiran
- NanoLund and Solid State Physics, Lund University, Box 118, SE - 22100, Lund, Sweden
| | - Roman Lyttleton
- NanoLund and Solid State Physics, Lund University, Box 118, SE - 22100, Lund, Sweden
| | - Paul M G Curmi
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Christopher N Angstmann
- School of Mathematics and Statistics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ralf Eichhorn
- Nordita, Royal Institute of Technology and Stockholm University, 106 91, Stockholm, Sweden
| | - Heiner Linke
- NanoLund and Solid State Physics, Lund University, Box 118, SE - 22100, Lund, Sweden.
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
5
|
Piranej S, Zhang L, Bazrafshan A, Marin M, Melikyan GB, Salaita K. Rolosense: Mechanical detection of SARS-CoV-2 using a DNA-based motor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530294. [PMID: 36909543 PMCID: PMC10002644 DOI: 10.1101/2023.02.27.530294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Assays detecting viral infections play a significant role in limiting the spread of diseases such as SARS-CoV-2. Here we present Rolosense, a virus sensing platform that transduces the motion of synthetic DNA-based motors transporting 5-micron particles on RNA fuel chips. Motors and chips are modified with virus-binding aptamers that lead to stalling of motion. Therefore, motors perform a "mechanical test" of viral target and stall in the presence of whole virions which represents a unique mechanism of transduction distinct from conventional assays. Rolosense can detect SARS-CoV-2 spiked in artificial saliva and exhaled breath condensate with a sensitivity of 103 copies/mL and discriminates among other respiratory viruses. The assay is modular and amenable to multiplexing, as we demonstrated one-pot detection of influenza A and SARS-CoV-2. As a proof-of-concept, we show readout can be achieved using a smartphone camera in as little as 15 mins without any sample preparation steps. Taken together, mechanical detection using Rolosense can be broadly applied to any viral target and has the potential to enable rapid, low-cost, point-of-care screening of circulating viruses.
Collapse
Affiliation(s)
- Selma Piranej
- Department of Chemistry, Emory University, Atlanta, GA 30322 (USA)
| | - Luona Zhang
- Department of Chemistry, Emory University, Atlanta, GA 30322 (USA)
| | | | - Mariana Marin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322 (USA)
- Children’s Healthcare of Atlanta, Atlanta, Georgia 30322 (USA)
| | - Gregory B. Melikyan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322 (USA)
- Children’s Healthcare of Atlanta, Atlanta, Georgia 30322 (USA)
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA 30322 (USA)
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322 (USA)
| |
Collapse
|