1
|
Duncan AM, Ellis CM, Levingston H, Kerckhoffs A, Mózes FE, Langton MJ, Davis JJ. Ion carrier modulated MRI contrast. Chem Sci 2024; 15:d3sc03466f. [PMID: 39129769 PMCID: PMC11310829 DOI: 10.1039/d3sc03466f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/17/2024] [Indexed: 08/13/2024] Open
Abstract
An ion-responsive MRI contrast agent based on a POPC liposomal scaffold is generated that displays a large amplitude relaxivity switch. Entrapment of MR active Gd-DOTA within cholesterol-doped, i.e., membrane rigidified, liposomes dampens the MR response through diminished water exchange across the lipid bilayer. Relaxivity is re-established by integration of ion carriers in the liposome membrane to mediate solvated ion flux.
Collapse
Affiliation(s)
- Anna M Duncan
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK +44(0)1865272690 +44(0)1865275914
| | - Connor M Ellis
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK +44(0)1865272690 +44(0)1865275914
| | - Hannah Levingston
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK +44(0)1865272690 +44(0)1865275914
| | - Aidan Kerckhoffs
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK +44(0)1865272690 +44(0)1865275914
| | - Ferenc E Mózes
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Level 0, John Radcliffe Hospital Oxford OX3 9DU UK
| | - Matthew J Langton
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK +44(0)1865272690 +44(0)1865275914
| | - Jason J Davis
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK +44(0)1865272690 +44(0)1865275914
| |
Collapse
|
2
|
Benedetto A. Ionic liquids meet lipid bilayers: a state-of-the-art review. Biophys Rev 2023; 15:1909-1939. [PMID: 38192351 PMCID: PMC10771448 DOI: 10.1007/s12551-023-01173-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
In the past 25 years, a vast family of complex organic salts known as room-temperature ionic liquids (ILs) has received increasing attention due to their potential applications. ILs are composed by an organic cation and either an organic or inorganic anion, and possess several intriguing properties such as low vapor pressure and being liquid around room temperature. Several biological studies flagged their moderate-to-high (cyto)-toxicity. Toxicity is, however, also a synonym of affinity, and this boosted a series of biophysical and chemical-physical investigations aimed at exploiting ILs in bio-nanomedicine, drug-delivery, pharmacology, and bio-nanotechnology. Several of these investigations focused on the interaction between ILs and lipid membranes, aimed at determining the microscopic mechanisms behind their interaction. This is the focus of this review work. These studies have been carried out on a variety of different lipid bilayer systems ranging from 1-lipid to 5-lipids systems, and also on cell-extracted membranes. They have been carried out at different chemical-physical conditions and by the use of a number of different approaches, including atomic force microscopy, neutron and X-ray scattering, dynamic light scattering, differential scanning calorimetry, surface quartz microbalance, nuclear magnetic resonance, confocal fluorescence microscopy, and molecular dynamics simulations. The aim of this "2023 Michèle Auger Award" review work is to provide the reader with an up-to-date overview of this fascinating research field where "ILs meet lipid bilayers (aka biomembranes)," with the aim to boost it further and expand its cross-disciplinary edges towards novel high-impact ideas/applications in pharmacology, drug delivery, biomedicine, and bio-nanotechnology.
Collapse
Affiliation(s)
- Antonio Benedetto
- School of Physics, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Department of Science, University of Roma Tre, Rome, Italy
- Laboratory for Neutron Scattering, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
3
|
Mei Z, Fu Y, Wang F, Xiang L, Hu F, Harindintwali JD, Wang M, Virta M, Hashsham SA, Jiang X, Tiedje JM. Magnetic biochar/quaternary phosphonium salt reduced antibiotic resistome and pathobiome on pakchoi leaves. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132388. [PMID: 37639796 DOI: 10.1016/j.jhazmat.2023.132388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Antibiotic resistance genes (ARGs) and human pathogenic bacteria (HPB) in leafy vegetable is a matter of concern as they can be transferred from soil, atmosphere, and foliar sprays, and poses a potential risk to public health. While traditional disinfection technologies are effective in reducing the presence of ARGs and HPB in soil. A new technology, foliar spraying with magnetic biochar/quaternary ammonium salt (MBQ), was demonstrated and applied to the leaf surface. High-throughput quantitative PCR targeting 96 valid ARGs and 16 S rRNA sequencing were used to assess its efficacy in reducing ARGs and HPB. The results showed that spraying MBQ reduced 97.0 ± 0.81% of "high-risk ARGs", associated with seven classes of antibiotic resistance in pakchoi leaves within two weeks. Water washing could further reduce "high-risk ARGs" from pakchoi leaves by 19.8%- 24.6%. The relative abundance of HPB closely related to numerous ARGs was reduced by 15.2 ± 0.23% with MBQ application. Overall, this study identified the potential risk of ARGs from leafy vegetables and clarified the significant implications of MBQ application for human health as it offers a promising strategy for reducing ARGs and HPB in leafy vegetables.
Collapse
Affiliation(s)
- Zhi Mei
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Faculty of Agriculture and Forestry Department of Microbiology, University of Helsinki, 00014, Finland
| | - Yuhao Fu
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Leilei Xiang
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Hu
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jean Damascene Harindintwali
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyi Wang
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Geographical Sciences, Nantong University, Nantong 226001, China
| | - Marko Virta
- Faculty of Agriculture and Forestry Department of Microbiology, University of Helsinki, 00014, Finland
| | - Syed A Hashsham
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA; Department of Civil and Environmental Engineering, Michigan State University, MI 48824, USA
| | - Xin Jiang
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - James M Tiedje
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA
| |
Collapse
|
4
|
Forero-Martinez NC, Cortes-Huerto R, Ward L, Ballone P. Water Harvesting by Thermoresponsive Ionic Liquids: A Molecular Dynamics Study of the Water Absorption Kinetics and of the Role of Nanostructuring. J Phys Chem B 2023. [PMID: 37267503 DOI: 10.1021/acs.jpcb.3c01655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ionic liquids (ILs) whose water solutions are thermoresponsive provide an appealing route to harvest water from the atmosphere at an energy cost that can be accessed by solar heating. IL/water solutions that present a lower critical solution temperature (LCST), i.e., demix upon increasing temperature, represent the most promising choice for this task since they could absorb vapor during the night when its saturation is highest and release liquid water during the day. The kinetics of water absorption at the surface and the role of nanostructuring in this process have been investigated by atomistic molecular dynamics simulations for the ionic liquid tetrabutyl phosphonium 2,4-dimethylbenzenesulfonate whose LCST in water occurs at Tc = 36 °C for solutions of 50-50 wt % composition. The simulation results show that water molecules are readily adsorbed on the IL and migrate along the surface to form thick three-dimensional islands. On a slightly longer time scale, ions crawl on these islands, covering water and recreating the original surface whose free energy is particularly low. At a high deposition rate, this mechanism allows the fast incorporation of large amounts of water, producing subsurface water pockets that eventually merge into the populations of water-rich and IL-rich domains in the nanostructured bulk. Simulation results suggest that strong nanostructuring could ease the separation of water and water-contaminated IL phases even before macroscopic demixing.
Collapse
Affiliation(s)
- Nancy C Forero-Martinez
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128 Mainz, Germany
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Lainey Ward
- School of Physics, University College Dublin, UCD Belfield Campus, D04V1W8 Dublin 4, Ireland
| | - Pietro Ballone
- School of Physics, University College Dublin, UCD Belfield Campus, D04V1W8 Dublin 4, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, UCD Belfield Campus, D04V1W8 Dublin 4, Ireland
| |
Collapse
|
5
|
Cabriolu R, Pollet BG, Ballone P. Effect of Organic Ions on The Formation and Collapse of Nanometric Bubbles in Ionic Liquid/Water Solutions: A Molecular Dynamics Study. J Phys Chem B 2023; 127:1628-1644. [PMID: 36786732 PMCID: PMC9969518 DOI: 10.1021/acs.jpcb.2c07950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Molecular dynamics simulation is applied to investigate the effect of two ionic liquids (IL) on the nucleation and growth of (nano)cavities in water under tension and on the cavities' collapse following the release of tension. Simulations of the same phenomena in two pure water samples of different sizes are carried out for comparison. The first IL, i.e., tetra-ethylammonium mesylate ([Tea][Ms]), is relatively hydrophilic and its addition to water at 25 wt % concentration decreases its tendency to nucleate cavities. Apart from quantitative details, cavity formation and collapse are similar to those taking place in water and qualitatively follow the Rayleigh-Plesset (RP) equation. The second IL, i.e., tetrabutyl phosphonium 2,4-dimethylbenzenesulfonate ([P4444][DMBS]), is amphiphilic and forms nanostructured solutions with water. At 25 wt % concentrations, [P4444][DMBS] favors the nucleation of bubbles that tend to form at the interface between water-rich and IL-rich domains. Cavity collapse in [P4444][DMBS]/water solutions are greatly hindered by a shell of ions decorating the interface between the solution and the vapor phase. A similar effect is observed for the equilibration of a population of bubbles of different sizes. The drastic slowing down of the bubbles' relaxation processes suggests ways to produce long-lived nanometric cavities in the liquid phase that could be useful for nanotechnology and drug delivery.
Collapse
Affiliation(s)
- Raffaela Cabriolu
- Department
of Physics, Norwegian University of Science
and Technology (NTNU), 7491 Trondheim, Norway,E-mail:
| | - Bruno G. Pollet
- Green
Hydrogen Laboratory, Université du
Québec á Trois-Riviéres, 3351 Boulevard des Forges, Trois-Riviéres, Quebec G9A 5H7, Canada
| | - Pietro Ballone
- School
of Physics, University College, Dublin D04 V1W8, Ireland,Conway
Institute for Biomolecular and Biomedical Research, University College, Dublin D04 V1W8, Ireland
| |
Collapse
|