1
|
Hong S, Seo MY, Seo D, Nam KM, Kim Y, Chang J. Water-in-Salt Electrolyte Stabilizes Pyrazine Radical: Suppression of Its Aggregation by Interaction between Pyrazine and Li(H 2O) n. J Am Chem Soc 2025; 147:16812-16825. [PMID: 40327745 DOI: 10.1021/jacs.4c09561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Stabilizing radical intermediates of redox-active organic molecules in aqueous media is crucial for advancing applications in energy storage, catalysis, and electrosynthesis. This study investigates the stabilization of protonated radical intermediates of pyrazine derivatives in water-in-salt electrolytes (WISEs) with 7-8 m LiTFSI. Strong interactions between pyrazine derivatives and Li+-coordinated water (Li(H2O)n+) in WISEs prevent molecular aggregation and protect radical intermediates from disproportionation and oxygen-induced degradation. Voltammetric results show that higher concentrations of LiTFSI enhance both the stability and redox reversibility of dimethylpyrazine (DMP) radical intermediates, with protonation identified as a key stabilizing factor. Notably, these stabilizing effects were absent in solutions containing concentrated LiCl or LiNO3. Fourier-transform infrared (FTIR) spectroscopy and molecular dynamics (MD) simulations confirmed reduced DMP aggregation in LiTFSI-based electrolytes, driven by interactions with Li(H2O)n+, while no similar solvation structure modification occurred with LiNO3. The protonated radical intermediates in LiTFSI-based WISEs exhibited greater resistance to oxygen-induced degradation compared to conventional acidic solutions. Additionally, substitution of methyl or ethyl groups on the pyrazine ring destabilized the corresponding radical intermediates in LiTFSI-based WISEs, primarily due to the alkyl inductive effect, as evidenced by electrochemical and UV-visible absorption spectroscopy. Charge-discharge tests in an H-cell further demonstrated significantly improved Coulombic efficiency of pyrazine redox reactions in LiTFSI-based WISEs compared to acidic Salt-in-Water electrolytes, underscoring the importance of radical intermediate stabilization.
Collapse
Affiliation(s)
- Seeun Hong
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Min Young Seo
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Dongho Seo
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Ki Min Nam
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - YongJoo Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinho Chang
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
2
|
Wood HO, Burnett HM, Dryfe RAW, Carbone P. Stability and structure of the aqueous LiTFSI-LiCl interface. Faraday Discuss 2024; 253:212-232. [PMID: 39023276 DOI: 10.1039/d4fd00026a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
It has recently been demonstrated that aqueous lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium chloride (LiCl) solutions can form stable liquid-liquid biphasic systems when both electrolyte phases have sufficiently high concentrations. In this work, we combine molecular dynamics simulations and experimental analysis to investigate what drives the formation of the interface and how the interfacial molecular structure correlates with its thermodynamic stability. We observe that at the liquid-vapour interface, TFSI- anions exhibit surfactant-like properties, leading to a reduction in surface tension and an increase in interfacial thickness. In contrast, the interfacial stability of the LiTFSI-LiCl biphasic systems increases with the concentration of both salts, as evidenced by the increasing surface tension and decreasing interfacial thickness. The opposing effects that the ionic concentration has on the thermodynamic stability of the different interfaces are linked to the anions' interfacial adsorption/desorption, which in turn affects the number and strength of water-water hydrogen bonds, the interfacial molecular structure and the diffusion of cations across the interface. Finally, calculations and experiments indicate that the liquid-liquid separation is driven primarily by the concentration of LiCl, and is the result of a 'salting out' effect.
Collapse
Affiliation(s)
- Hannah O Wood
- Department of Chemistry, University of Manchester, Oxford Rd, Manchester, UK.
| | - Hannah M Burnett
- Department of Chemistry, University of Manchester, Oxford Rd, Manchester, UK.
| | - Robert A W Dryfe
- Department of Chemistry, University of Manchester, Oxford Rd, Manchester, UK.
| | - Paola Carbone
- Department of Chemistry, University of Manchester, Oxford Rd, Manchester, UK.
| |
Collapse
|
3
|
Zhang C, Chen B, Chen Q, Liu Y, Kong X, Suo L, Lu J, Pan H. Regulation of Molecular Microheterogeneity in Electrolytes Enables Ampere-Hour-Level Aqueous LiMn 2O 4||Li 4Ti 5O 12 Pouch Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405913. [PMID: 39166451 DOI: 10.1002/adma.202405913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Aqueous batteries are attractive due to their high safety and fast reaction kinetics, but the narrow electrochemical stability window of H2O limits their applications. It is a big challenge to broaden the electrochemical operation window of aqueous electrolytes while retaining fast reaction kinetics. Here, a new organic aqueous mixture electrolyte of manipulatable (3D) molecular microheterogeneity with H2O-rich and H2O-poor domains is demonstrated. H2O-poor domains molecularly surround the reformed microclusters of H2O molecules through interfacial H-bonds, which thus not only inhibit the long-range transfer of H2O but also allow fast and consecutive Li+ transport. This new design enables low-voltage anodes reversibly cycling with aqueous-based electrolytes and high ionic conductivity of 4.5 mS cm-1. LiMn2O4||Li4Ti5O12 full cells demonstrate excellent cycling stability over 1000 cycles under various C rates and a low temperature of -20 °C. 1 Ah pouch cell delivers a high energy density of 79.3 Wh kg-1 and high Coulombic efficiency of 99.4% at 1 C over 200 cycles. This work provides new insights into the design of electrolytes based on the molecular microheterogeneity for rechargeable batteries.
Collapse
Affiliation(s)
- Canfu Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Binbin Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Qinlong Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yingchun Liu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xueqian Kong
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Liumin Suo
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jun Lu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Huilin Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310012, P. R. China
| |
Collapse
|
4
|
Singh N, Kashyap HK. Are NaTFSI and NaFSI Salt-Based Water-in-Salt Electrolytes Structurally Similar or Different? J Phys Chem B 2024. [PMID: 39045859 DOI: 10.1021/acs.jpcb.4c02863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Water-in-salt electrolytes (WiSEs) are a promising class of electrolytes due to their wide electrochemical stability window and nonflammability. In this study, we explore the structural organization of sodium bis(trifluoromethylsulfonyl)imide (NaTFSI) and sodium bis(fluorosulfonyl)imide (NaFSI) salt-based aqueous electrolytes, covering dilute to highly concentrated regions, by employing an all-atom molecular dynamics simulation. For the NaTFSI-based electrolyte, we observe that Na+ ions are mostly surrounded by water molecules at all the salt concentrations due to the very strong interaction between them. While TFSI anions weakly coordinate with Na+ ions and other TFSI anions, they also mostly prefer to be surrounded by water molecules. These interactions were found to have moderate dependence on the concentration of the NaTFSI salt. For the NaFSI-based electrolyte, while the Na+-water interaction is stronger at lower salt concentrations, the number of nearest neighbor FSI anions is found to be more than that of water at higher concentrations (≥20 m). This is because the increase in the salt concentration leads to expulsion of water molecules from the solvation shell of Na+ ions and enhances the interaction between Na+ ions and oxygen atoms of FSI. At the highest salt concentration (solubility limit), the bulk-like water structure is completely disrupted and dominated by an anionic network in the FSI-based electrolyte. In contrast, water-water hydrogen bonding network is still present even in the highly concentrated TFSI-based electrolyte. The simulated X-ray scattering pattern displays a low-q peak, revealing the presence of an intermediate range ordering due to alternating anion-rich and water/Na+-rich regions in both the electrolytes. However, the characteristic length scale corresponding to the low-q peak decreases with increasing the salt content in both the electrolytes.
Collapse
Affiliation(s)
- Navneet Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
5
|
Lyu X, Wang H, Liu X, He L, Do C, Seifert S, Winans RE, Cheng L, Li T. Solvation Structure of Methanol-in-Salt Electrolyte Revealed by Small-Angle X-ray Scattering and Simulations. ACS NANO 2024; 18:7037-7045. [PMID: 38373167 DOI: 10.1021/acsnano.3c10469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The solvation structure of water-in-salt electrolytes was thoroughly studied, and two competing structures─anion solvated structure and anion network─were well-defined in recent publications. To further reveal the solvation structure in those highly concentrated electrolytes, particularly the influence of solvent, methanol was chosen as the solvent for this proposed study. In this work, small-angle X-ray scattering, small-angle neutron scattering, Fourier-transform infrared spectroscopy, and Raman spectroscopy were utilized to obtain the global and local structural information. With the concentration increment, the anion network formed by TFSI- became the dominant structure. Meanwhile, the hydrogen bonds among methanol were interrupted by the TFSI- anion and formed a new connection with them. Molecular dynamic simulations with two different force fields (GAFF and OPLS-AA) are tested, and GAFF agreed with synchrotron small-angle X-ray scattering/wide-angle X-ray scattering (SAXS/WAXS) results well and provided insightful information about molecular/ion scale solvation structure. This article not only deepens the understanding of the solvation structure in highly concentrated solutions, but more importantly, it provides additional strong evidence for utilizing SAXS/WAXS to validate molecular dynamics simulations.
Collapse
Affiliation(s)
- Xingyi Lyu
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Haimeng Wang
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xinyi Liu
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Lilin He
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Soenke Seifert
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Randall E Winans
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Lei Cheng
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
6
|
Dhattarwal HS, Kashyap HK. Microstructures of Choline Amino Acid based Biocompatible Ionic Liquids. CHEM REC 2023; 23:e202200295. [PMID: 36960931 DOI: 10.1002/tcr.202200295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/26/2023] [Indexed: 03/25/2023]
Abstract
Bio-compatible ionic liquids (Bio-ILs) represent a class of solvents with peculiar properties and exhibit huge potential for their applications in different fields of chemistry. Ever since they were discovered, researchers have used bio-ILs in diverse fields such as biomass dissolution, CO2 sequestration, and biodegradation of pesticides. This review highlights the ongoing research studies focused on elucidating the microscopic structure of bio-ILs based on cholinium cation ([Ch]+ ) and amino acid ([AA]- ) anions using the state-of-the-arta b i n i t i o ${ab\hskip0.25eminitio}$ and classical molecular dynamics (MD) simulations. The microscopic structure associated with these green ILs guides their suitability for specific applications. ILs of this class differ in the side chain of the amino acid anions, and varying the side chain significantly affects the structure of these ILs and thus helps in tuning the efficiency of biomass dissolution. This review demonstrates the central role of the side chain on the morphology of choline amino acid ([Ch][AA]) bio-ILs. The seemingly matured field of bio-ILs and their employment in various applications still holds significant potential, and the insights on their microscopic structure would steer the field of target specific application of these green ILs.
Collapse
Affiliation(s)
- Harender S Dhattarwal
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
7
|
Chen R. Redox Flow Batteries: Electrolyte Chemistries Unlock the Thermodynamic Limits. Chem Asian J 2023; 18:e202201024. [PMID: 36367282 DOI: 10.1002/asia.202201024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Redox flow batteries (RFBs) represent a promising approach to enabling the widespread integration of intermittent renewable energy. Rapid developments in RFB materials and electrolyte chemistries are needed to meet the cost and performance targets. In this review, special emphasis is given to the recent advances how electrolyte design could circumvent the main thermodynamic restrictions of aqueous electrolytes. The recent success of aqueous electrolyte chemistries has been demonstrated by extending the electrochemical stability window of water beyond the thermodynamic limit, the operating temperature window beyond the thermodynamic freezing temperature of water and crystallization of redox-active materials, and the aqueous solubility beyond the thermodynamic solubility limit. They would open new avenues towards enhanced energy storage and all-climate adaptability. Depending on the constituent, concentration and condition of electrolytes, the performance gain has been correlated to the specific solvation environment, interactions among species and ion association at a molecular level.
Collapse
Affiliation(s)
- Ruiyong Chen
- Materials Innovation Factory Department of Chemistry, University of Liverpool, Liverpool, L7 3NY, United Kingdom.,Korea Institute of Science and Technology (KIST) Europe Campus E7 1, 66123, Saarbrücken, Germany.,Department of Chemistry, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
8
|
Li Q, Yang C, Zhang J, Ji X, Xu J, He X, Chen L, Hou S, Uddin J, Addison D, Sun D, Wang C, Wang F. Controlling Intermolecular Interaction and Interphase Chemistry Enabled Sustainable Water‐tolerance LiMn
2
O
4
||Li
4
Ti
5
O
12
Batteries. Angew Chem Int Ed Engl 2022; 61:e202214126. [DOI: 10.1002/anie.202214126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Qin Li
- Department of Materials Science Fudan University Shanghai China
| | - Chongyin Yang
- Department of Chemical and Biomolecular Engineering University of Maryland College Park, MD USA
| | - Jiaxun Zhang
- Department of Chemical and Biomolecular Engineering University of Maryland College Park, MD USA
| | - Xiao Ji
- Department of Chemical and Biomolecular Engineering University of Maryland College Park, MD USA
| | - Jijian Xu
- Department of Chemical and Biomolecular Engineering University of Maryland College Park, MD USA
| | - Xinzi He
- Department of Chemical and Biomolecular Engineering University of Maryland College Park, MD USA
| | - Long Chen
- Department of Chemical and Biomolecular Engineering University of Maryland College Park, MD USA
| | - Singyuk Hou
- Department of Chemical and Biomolecular Engineering University of Maryland College Park, MD USA
| | | | | | - Dalin Sun
- Department of Materials Science Fudan University Shanghai China
| | - Chunsheng Wang
- Department of Chemical and Biomolecular Engineering University of Maryland College Park, MD USA
| | - Fei Wang
- Department of Materials Science Fudan University Shanghai China
| |
Collapse
|