1
|
Deng J, Cui Q. Electronic Polarization Leads to a Drier Dewetted State for Hydrophobic Gating in the Big Potassium Channel. J Phys Chem Lett 2024; 15:7436-7441. [PMID: 39008088 DOI: 10.1021/acs.jpclett.4c01359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In the hydrophobic gating mechanism proposed for some ion channels, ion permeation is not blocked by the physical dimension of the channel pore but by its dewetted state which constitutes the energetic bottleneck. A major source of uncertainty in the mechanism is that the dewetted state was not observed in experiments and only probed in simulations using nonpolarizable force fields, which do not accurately represent the properties of confined water. Here we analyze hydration of the central cavity in the pore-gate domain of the Big Potassium channel using molecular dynamics and grand canonical Monte Carlo simulations with enhanced sampling techniques. Including polarization leads to a much drier dewetted state and a higher barrier for the transition to the wet state, suggesting more effective hydrophobic gating. The simulations also identify two backbone carbonyls at the bottom of the selectivity filter as good candidates for characterizing the dewetted state using infrared spectroscopies.
Collapse
Affiliation(s)
- Jiahua Deng
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| |
Collapse
|
2
|
Zhao Y, Du SS, Zhao CY, Li TL, Tong SC, Zhao L. Mechanism of Abnormal Activation of MEK1 Induced by Dehydroalanine Modification. Int J Mol Sci 2024; 25:7482. [PMID: 39000589 PMCID: PMC11242638 DOI: 10.3390/ijms25137482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Mitogen-activated protein kinase kinase 1 (MAPK kinase 1, MEK1) is a key kinase in the mitogen-activated protein kinase (MAPK) signaling pathway. MEK1 mutations have been reported to lead to abnormal activation that is closely related to the malignant growth and spread of various tumors, making it an important target for cancer treatment. Targeting MEK1, four small-molecular drugs have been approved by the FDA, including Trametinib, Cobimetinib, Binimetinib, and Selumetinib. Recently, a study showed that modification with dehydroalanine (Dha) can also lead to abnormal activation of MEK1, which has the potential to promote tumor development. In this study, we used molecular dynamics simulations and metadynamics to explore the mechanism of abnormal activation of MEK1 caused by the Dha modification and predicted the inhibitory effects of four FDA-approved MEK1 inhibitors on the Dha-modified MEK1. The results showed that the mechanism of abnormal activation of MEK1 caused by the Dha modification is due to the movement of the active segment, which opens the active pocket and exposes the catalytic site, leading to sustained abnormal activation of MEK1. Among four FDA-approved inhibitors, only Selumetinib clearly blocks the active site by changing the secondary structure of the active segment from α-helix to disordered loop. Our study will help to explain the mechanism of abnormal activation of MEK1 caused by the Dha modification and provide clues for the development of corresponding inhibitors.
Collapse
Affiliation(s)
- Yue Zhao
- School of Life Sciences, Jilin University, Changchun 130118, China; (Y.Z.); (S.-S.D.); (C.-Y.Z.)
| | - Shan-Shan Du
- School of Life Sciences, Jilin University, Changchun 130118, China; (Y.Z.); (S.-S.D.); (C.-Y.Z.)
| | - Chao-Yue Zhao
- School of Life Sciences, Jilin University, Changchun 130118, China; (Y.Z.); (S.-S.D.); (C.-Y.Z.)
| | - Tian-Long Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China; (T.-L.L.); (S.-C.T.)
| | - Si-Cheng Tong
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China; (T.-L.L.); (S.-C.T.)
| | - Li Zhao
- School of Life Sciences, Jilin University, Changchun 130118, China; (Y.Z.); (S.-S.D.); (C.-Y.Z.)
| |
Collapse
|
3
|
Trofimov YA, Krylov NA, Minakov AS, Nadezhdin KD, Neuberger A, Sobolevsky AI, Efremov RG. Dynamic molecular portraits of ion-conducting pores characterize functional states of TRPV channels. Commun Chem 2024; 7:119. [PMID: 38824263 PMCID: PMC11144267 DOI: 10.1038/s42004-024-01198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024] Open
Abstract
Structural biology is solving an ever-increasing number of snapshots of ion channel conformational ensembles. Deciphering ion channel mechanisms, however, requires understanding the ensemble dynamics beyond the static structures. Here, we present a molecular modeling-based approach characterizing the ion channel structural intermediates, or their "dynamic molecular portraits", by assessing water and ion conductivity along with the detailed evaluation of pore hydrophobicity and residue packing. We illustrate the power of this approach by analyzing structures of few vanilloid-subfamily transient receptor potential (TRPV) channels. Based on the pore architecture, there are three major states that are common for TRPVs, which we call α-closed, π-closed, and π-open. We show that the pore hydrophobicity and residue packing for the open state is most favorable for the pore conductance. On the contrary, the α-closed state is the most hydrophobic and always non-conducting. Our approach can also be used for structural and functional classification of ion channels.
Collapse
Affiliation(s)
- Yury A Trofimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay A Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
4
|
Blumer O, Reuveni S, Hirshberg B. Combining stochastic resetting with Metadynamics to speed-up molecular dynamics simulations. Nat Commun 2024; 15:240. [PMID: 38172126 PMCID: PMC10764788 DOI: 10.1038/s41467-023-44528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Metadynamics is a powerful method to accelerate molecular dynamics simulations, but its efficiency critically depends on the identification of collective variables that capture the slow modes of the process. Unfortunately, collective variables are usually not known a priori and finding them can be very challenging. We recently presented a collective variables-free approach to enhanced sampling using stochastic resetting. Here, we combine the two methods, showing that it can lead to greater acceleration than either of them separately. We also demonstrate that resetting Metadynamics simulations performed with suboptimal collective variables can lead to speedups comparable with those obtained with optimal collective variables. Therefore, applying stochastic resetting can be an alternative to the challenging task of improving suboptimal collective variables, at almost no additional computational cost. Finally, we propose a method to extract unbiased mean first-passage times from Metadynamics simulations with resetting, resulting in an improved tradeoff between speedup and accuracy. This work enables combining stochastic resetting with other enhanced sampling methods to accelerate a broad range of molecular simulations.
Collapse
Affiliation(s)
- Ofir Blumer
- School of Chemistry, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shlomi Reuveni
- School of Chemistry, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Barak Hirshberg
- School of Chemistry, Tel Aviv University, Tel Aviv, 6997801, Israel.
- The Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, 6997801, Israel.
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
5
|
Chen J, Qiu Z, Huang J. Structure and Dynamics of Confined Water Inside Diphenylalanine Peptide Nanotubes. ACS OMEGA 2023; 8:42936-42950. [PMID: 38024738 PMCID: PMC10652825 DOI: 10.1021/acsomega.3c06071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/22/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Diphenylalanine (FF) peptides exhibit a unique ability to self-assemble into nanotubes with confined water molecules playing pivotal roles in their structure and function. This study investigates the structure and dynamics of diphenylalanine peptide nanotubes (FFPNTs) using all-atom molecular dynamics (MD) and grand canonical Monte Carlo combined with MD (GCMC/MD) simulations with both the CHARMM additive and Drude polarizable force fields. The occupancy and dynamics of confined water molecules were also examined. It was found that less than 2 confined water molecules per FF help stabilize the FFPNTs on the x-y plane. Analyses of the kinetics of confined water molecules revealed distinctive transport behaviors for bound and free water, and their respective diffusion coefficients were compared. Our results validate the importance of polarizable force field models in studying peptide nanotubes and provide insights into our understanding of nanoconfined water.
Collapse
Affiliation(s)
- Jinfeng Chen
- College
of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Key
Laboratory of Structural Biology of Zhejiang Province, School of Life
Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake
AI Therapeutics Lab, Westlake Laboratory
of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Zongyang Qiu
- Key
Laboratory of Structural Biology of Zhejiang Province, School of Life
Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake
AI Therapeutics Lab, Westlake Laboratory
of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Jing Huang
- Key
Laboratory of Structural Biology of Zhejiang Province, School of Life
Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake
AI Therapeutics Lab, Westlake Laboratory
of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
6
|
Nordquist EB, Jia Z, Chen J. Inner pore hydration free energy controls the activation of big potassium channels. Biophys J 2023; 122:1158-1167. [PMID: 36774534 PMCID: PMC10111268 DOI: 10.1016/j.bpj.2023.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Hydrophobic gating is an emerging mechanism in regulation of protein ion channels where the pore remains physically open but becomes dewetted to block ion permeation. Atomistic molecular dynamics simulations have played a crucial role in understanding hydrophobic gating by providing the molecular details to complement mutagenesis and structural studies. However, existing studies rely on direct simulations and do not quantitatively describe how the sequence and structural changes may control the delicate liquid-vapor equilibrium of confined water in the pore of the channel protein. To address this limitation, we explore two enhanced sampling methods, namely metadynamics and umbrella sampling, to derive free-energy profiles of pore hydration in both the closed and open states of big potassium (BK) channels, which are important in cardiovascular and neural systems. It was found that metadynamics required substantially longer sampling times and struggled to generate stably converged free-energy profiles due to the slow dynamics of cooperative pore water diffusion even in the barrierless limit. Using umbrella sampling, well-converged free-energy profiles can be readily generated for the wild-type BK channels as well as three mutants with pore-lining mutations experimentally known to dramatically perturb the channel gating voltage. The results show that the free energy of pore hydration faithfully reports the gating voltage of the channel, providing further support for hydrophobic gating in BK channels. Free-energy analysis of pore hydration should provide a powerful approach for quantitative studies of how protein sequence, structure, solution conditions, and/or drug binding may modulate hydrophobic gating in ion channels.
Collapse
Affiliation(s)
- Erik B Nordquist
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Zhiguang Jia
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts.
| |
Collapse
|