1
|
Li CY, Fan LY, Lin CH, Hu CJ, Chiu MJ. Ultrasensitive Assays Detect Different Conformations of Plasma β Amyloids. ACS OMEGA 2025; 10:7256-7263. [PMID: 40028141 PMCID: PMC11865983 DOI: 10.1021/acsomega.4c10879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/18/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025]
Abstract
With the developments of ultrasensitive technologies such as immunomagnetic reduction (IMR) assay, single molecule array (SIMOA) assay, electrochemiluminescence immunoassay (ECLIA), the assay of blood-based amyloid 1-42 (Aβ1-42) becomes possible. However, the changes in measured plasma Aβ1-42 concentrations in Alzheimer's disease (AD) compared to cognitively unimpaired subjects (CU) are inconsistent. A possible reason for the inconsistency regarding various conformations of Aβ1-42 in plasma is explored in this study. Three samples with equal amounts of Aβ1-42 but different proportions of monomers and oligomers of Aβ1-42 were prepared. The Aβ1-42 composition of monomers and oligomers in samples was analyzed with Western blot. Identically diluted versions of these three samples were assayed with IMR and SIMOA for Aβ1-42 concentrations. The three diluted samples showed similar levels of Aβ1-42 assayed with IMR, whereas much lower levels for samples with more oligomers assayed with SIOMA. The results imply that IMR detects both monomers and oligomers of Aβ1-42. The measured levels of Aβ1-42 are independent of the proportions of monomer or oligomer Aβ1-42 but depend on the total amounts of Aβ1-42. In the case of SIMOA, monomers of Aβ1-42 are the primary target measured. By comparing Aβ1-42 concentrations of the plasma using IMR and SIMOA, the significant difference in plasma Aβ1-42 levels using IMR in AD compared to CU is mainly due to the formations of oligomeric Aβ1-42. Therefore, if the target molecules are monomers of Aβ1-42, SIMOA is the method of choice. Still, if the target molecules should include monomers, small and large oligomers, IMR would be an optimal consideration. In the future, the clinical implications of the proportion of oligomeric Aβ1-42 need to be elucidated.
Collapse
Affiliation(s)
- Chia-Yu Li
- Department
of Neurology, National Taiwan University
Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ling-Yun Fan
- Departments
of Neurology, National Taiwan University
Hospital Bei-Hu Branch, Taipei 108, Taiwan
| | - Chin-Hsien Lin
- Department
of Neurology, National Taiwan University
Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Institute
of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department
of Biomedical Engineering, National Taiwan
University, Taipei 106, Taiwan
| | - Chaur-Jong Hu
- Taipei
Neuroscience Institute, Taipei Medical University, New Taipei City, 235 Taiwan
- Department
of Neurology and Dementia Center, Taipei
Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan
- Department
of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ming-Jang Chiu
- Department
of Neurology, National Taiwan University
Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
2
|
Malajczuk CJ, Mancera RL. Molecular Simulation of the Binding of Amyloid Beta to Apolipoprotein A-I in High-Density Lipoproteins. Int J Mol Sci 2025; 26:1380. [PMID: 39941148 PMCID: PMC11818119 DOI: 10.3390/ijms26031380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/16/2025] Open
Abstract
Disrupted clearance of amyloid beta (Aβ) from the brain enhances its aggregation and formation of amyloid plaques in Alzheimer's disease. The most abundant protein constituent of circulating high-density lipoprotein (HDL) particles, apoA-I, readily crosses the blood-brain barrier from periphery circulation, exhibits low-micromolar binding affinity for soluble, neurotoxic forms of Aβ, and modulates Aβ aggregation and toxicity in vitro. Its highly conserved N-terminal sequence, 42LNLKLLD48 ('LN'), has been proposed as a binding region for Aβ. However, high-resolution structural characterisation of the mechanism of HDL-Aβ interaction is very difficult to attain. Molecular dynamics simulations were conducted to investigate for the first time the interaction of Aβ and the 'LN' segment of apoA-I. Favourable binding of Aβ by HDLs was found to be driven by hydrophobic and hydrogen-bonding interactions predominantly between the 'LN' segment of apoA-I and Aβ. Preferential binding of Aβ may proceed in small, protein-rich HDLs whereby solvent-exposed hydrophobic 'LN' segments of apoA-I interact specifically with Aβ, stabilising it on the HDL surface in a possibly non-amyloidogenic conformation, facilitating effective Aβ clearance. These findings rationalise the potentially therapeutic role of HDLs in reducing Aβ aggregation and toxicity, and of peptide mimics of the apoA-I interacting region in blocking Aβ aggregation.
Collapse
Affiliation(s)
| | - Ricardo L. Mancera
- Curtin Medical School and Curtin Medical Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia;
| |
Collapse
|
3
|
Ruttenberg S, Kreutzer AG, Truex NL, Nowick JS. β-Hairpin Alignment Alters Oligomer Formation in Aβ-Derived Peptides. Biochemistry 2024; 63:212-218. [PMID: 38163326 PMCID: PMC10795187 DOI: 10.1021/acs.biochem.3c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Amyloid-β (Aβ) forms heterogeneous oligomers, which are implicated in the pathogenesis of Alzheimer's disease (AD). Many Aβ oligomers consist of β-hairpin building blocks─Aβ peptides in β-hairpin conformations. β-Hairpins of Aβ can adopt a variety of alignments, but the role that β-hairpin alignment plays in the formation and heterogeneity of Aβ oligomers is poorly understood. To explore the effect of β-hairpin alignment on the oligomerization of Aβ peptides, we designed and studied two model peptides with two different β-hairpin alignments. Peptides Aβm17-36 and Aβm17-35 mimic two different β-hairpins that Aβ can form, the Aβ17-36 and Aβ17-35 β-hairpins, respectively. These hairpins are similar in composition but differ in hairpin alignment, altering the facial arrangements of the side chains of the residues that they contain. X-ray crystallography and SDS-PAGE demonstrate that the difference in facial arrangement between these peptides leads to distinct oligomer formation. In the crystal state, Aβm17-36 forms triangular trimers that further assemble to form hexamers, while Aβm17-35 forms tetrameric β-barrels. In SDS-PAGE, Aβm17-36 assembles to form a ladder of oligomers, while Aβm17-35 either assembles to form a dimer or does not assemble at all. The differences in the behavior of Aβm17-36 and Aβm17-35 suggest β-hairpin alignment as a source of the observed heterogeneity of Aβ oligomers.
Collapse
Affiliation(s)
- Sarah
M. Ruttenberg
- Department of Chemistry, University of California, Irvine Irvine, California 92697-2025, United
States
| | - Adam G. Kreutzer
- Department of Chemistry, University of California, Irvine Irvine, California 92697-2025, United
States
| | - Nicholas L. Truex
- Department of Chemistry, University of California, Irvine Irvine, California 92697-2025, United
States
| | - James S. Nowick
- Department of Chemistry, University of California, Irvine Irvine, California 92697-2025, United
States
| |
Collapse
|
4
|
Yang ZJ, Shao Q, Jiang Y, Jurich C, Ran X, Juarez RJ, Yan B, Stull SL, Gollu A, Ding N. Mutexa: A Computational Ecosystem for Intelligent Protein Engineering. J Chem Theory Comput 2023; 19:7459-7477. [PMID: 37828731 PMCID: PMC10653112 DOI: 10.1021/acs.jctc.3c00602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Indexed: 10/14/2023]
Abstract
Protein engineering holds immense promise in shaping the future of biomedicine and biotechnology. This Review focuses on our ongoing development of Mutexa, a computational ecosystem designed to enable "intelligent protein engineering". In this vision, researchers will seamlessly acquire sequences of protein variants with desired functions as biocatalysts, therapeutic peptides, and diagnostic proteins through a finely-tuned computational machine, akin to Amazon Alexa's role as a versatile virtual assistant. The technical foundation of Mutexa has been established through the development of a database that combines and relates enzyme structures and their respective functions (e.g., IntEnzyDB), workflow software packages that enable high-throughput protein modeling (e.g., EnzyHTP and LassoHTP), and scoring functions that map the sequence-structure-function relationship of proteins (e.g., EnzyKR and DeepLasso). We will showcase the applications of these tools in benchmarking the convergence conditions of enzyme functional descriptors across mutants, investigating protein electrostatics and cavity distributions in SAM-dependent methyltransferases, and understanding the role of nonelectrostatic dynamic effects in enzyme catalysis. Finally, we will conclude by addressing the future steps and fundamental challenges in our endeavor to develop new Mutexa applications that assist the identification of beneficial mutants in protein engineering.
Collapse
Affiliation(s)
- Zhongyue J. Yang
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Data
Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Qianzhen Shao
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yaoyukun Jiang
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Christopher Jurich
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Xinchun Ran
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Reecan J. Juarez
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Bailu Yan
- Department
of Biostatistics, Vanderbilt University, Nashville, Tennessee 37205, United States
| | - Sebastian L. Stull
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Anvita Gollu
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ning Ding
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
5
|
Wu R, Wang Z, Jia Z, Li C, Wang J, Liu L, Dong M. Identification of hybrid amyloid strains assembled from amyloid- βand human islet amyloid polypeptide. NANOTECHNOLOGY 2023; 34:505101. [PMID: 37625382 DOI: 10.1088/1361-6528/acf3ee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
Cross-fibrillation of amyloid-β(Aβ) peptides and human islet amyloid polypeptides (hIAPP) has revealed a close correlation between Alzheimer's disease and type 2 diabetes (T2D). Importantly, different amyloid strains are likely to lead to the clinical pathological heterogeneity of degenerative diseases due to toxicity. However, given the complicated cross-interactions between different amyloid peptides, it is still challenging to identify the polymorphism of the hybrid amyloid strains and reveal mechanistic insights into aggregation, but highly anticipated due to their significance. In this study, we investigated the cross-fibrillation of Aβpeptides and different hIAPP species (monomers, oligomers, and fibrils) using combined experimental and simulation approaches. Cross-seeding and propagation of different amyloid peptides monitored by experimental techniques proved that the three species of hIAPP aggregates have successively enhanced Aβfibrillation, especially for hIAPP fibrils. Moreover, the polymorphism of these morphologically similar hybrid amyloid strains could be distinguished by testing their mechanical properties using quantitative nanomechanical mapping, where the assemblies of Aβ-hIAPP fibrils exhibited the high Young's modulus. Furthermore, the enhanced internal molecular interactions andβ-sheet structural transformation were proved by exploring the conformational ensembles of Aβ-hIAPP heterodimer and Aβ-hIAPP decamer using molecular dynamic simulations. Our findings pave the way for identifying different hybrid amyloid strains by quantitative nanomechanical mapping and molecular dynamic simulations, which is important not only for the precise classification of neurodegenerative disease subtypes but also for future molecular diagnosis and therapeutic treatment of multiple interrelated degenerative diseases.
Collapse
Affiliation(s)
- Rongrong Wu
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zengkai Wang
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zili Jia
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Chenglong Li
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jie Wang
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Lei Liu
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Mingdong Dong
- Aarhus University, Interdisciplinary Nanoscience Center (iNANO) Aarhus C DK-8000, Denmark
| |
Collapse
|
6
|
Firouzi R, Sowlati-Hashjin S, Chávez-García C, Ashouri M, Karimi-Jafari MH, Karttunen M. Identification of Catechins' Binding Sites in Monomeric A β42 through Ensemble Docking and MD Simulations. Int J Mol Sci 2023; 24:ijms24098161. [PMID: 37175868 PMCID: PMC10179585 DOI: 10.3390/ijms24098161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
The assembly of the amyloid-β peptide (Aβ) into toxic oligomers and fibrils is associated with Alzheimer's disease and dementia. Therefore, disrupting amyloid assembly by direct targeting of the Aβ monomeric form with small molecules or antibodies is a promising therapeutic strategy. However, given the dynamic nature of Aβ, standard computational tools cannot be easily applied for high-throughput structure-based virtual screening in drug discovery projects. In the current study, we propose a computational pipeline-in the framework of the ensemble docking strategy-to identify catechins' binding sites in monomeric Aβ42. It is shown that both hydrophobic aromatic interactions and hydrogen bonding are crucial for the binding of catechins to Aβ42. Additionally, it has been found that all the studied ligands, especially EGCG, can act as potent inhibitors against amyloid aggregation by blocking the central hydrophobic region of Aβ. Our findings are evaluated and confirmed with multi-microsecond MD simulations. Finally, it is suggested that our proposed pipeline, with low computational cost in comparison with MD simulations, is a suitable approach for the virtual screening of ligand libraries against Aβ.
Collapse
Affiliation(s)
- Rohoullah Firouzi
- Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran 1496813151, Iran
| | | | - Cecilia Chávez-García
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Mitra Ashouri
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran P.O. Box 14155-6619, Iran
| | - Mohammad Hossein Karimi-Jafari
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran P.O. Box 14155-6619, Iran
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| |
Collapse
|
7
|
Nguyen PH, Sterpone F, Derreumaux P. Metastable alpha-rich and beta-rich conformations of small Aβ42 peptide oligomers. Proteins 2023. [PMID: 37038252 DOI: 10.1002/prot.26495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Accepted: 03/23/2023] [Indexed: 04/12/2023]
Abstract
Probing the structures of amyloid-β (Aβ) peptides in the early steps of aggregation is extremely difficult experimentally and computationally. Yet, this knowledge is extremely important as small oligomers are the most toxic species. Experiments and simulations on Aβ42 monomer point to random coil conformations with either transient helical or β-strand content. Our current conformational description of small Aβ42 oligomers is funneled toward amorphous aggregates with some β-sheet content and rare high energy states with well-ordered assemblies of β-sheets. In this study, we emphasize another view based on metastable α-helix bundle oligomers spanning the C-terminal residues, which are predicted by the machine-learning AlphaFold2 method and supported indirectly by low-resolution experimental data on many amyloid polypeptides. This finding has consequences in developing novel chemical tools and to design potential therapies to reduce aggregation and toxicity.
Collapse
Affiliation(s)
- Phuong H Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Paris Cité, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, Paris, 75005, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Paris Cité, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, Paris, 75005, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Paris Cité, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, Paris, 75005, France
- Institut Universitaire de France (IUF), Paris, 75005, France
| |
Collapse
|
8
|
Ghosh S, Ali R, Verma S. Aβ-oligomers: A potential therapeutic target for Alzheimer's disease. Int J Biol Macromol 2023; 239:124231. [PMID: 36996958 DOI: 10.1016/j.ijbiomac.2023.124231] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
The cascade of amyloid formation relates to multiple complex events at the molecular level. Previous research has established amyloid plaque deposition as the leading cause of Alzheimer's disease (AD) pathogenesis, detected mainly in aged population. The primary components of the plaques are two alloforms of amyloid-beta (Aβ), Aβ1-42 and Aβ1-40 peptides. Recent studies have provided considerable evidence contrary to the previous claim indicating that amyloid-beta oligomers (AβOs) as the main culprit responsible for AD-associated neurotoxicity and pathogenesis. In this review, we have discussed the primary features of AβOs, such as assembly formation, the kinetics of oligomer formation, interactions with various membranes/membrane receptors, the origin of toxicity, and oligomer-specific detection methods. Recently, the discovery of rationally designed antibodies has opened a gateway for using synthesized peptides as a grafting component in the complementarity determining region (CDR) of antibodies. Thus, the Aβ sequence motif or the complementary peptide sequence in the opposite strand of the β-sheet (extracted from the Protein Data Bank: PDB) helps design oligomer-specific inhibitors. The microscopic event responsible for oligomer formation can be targeted, and thus prevention of the overall macroscopic behaviour of the aggregation or the associated toxicity can be achieved. We have carefully reviewed the oligomer formation kinetics and associated parameters. Besides, we have depicted a thorough understanding of how the synthesized peptide inhibitors can impede the early aggregates (oligomers), mature fibrils, monomers, or a mixture of the species. The oligomer-specific inhibitors (peptides or peptide fragments) lack in-depth chemical kinetics and optimization control-based screening. In the present review, we have proposed a hypothesis for effectively screening oligomer-specific inhibitors using the chemical kinetics (determining the kinetic parameters) and optimization control strategy (cost-dependent analysis). Further, it may be possible to implement the structure-kinetic-activity-relationship (SKAR) strategy instead of structure-activity-relationship (SAR) to improve the inhibitor's activity. The controlled optimization of the kinetic parameters and dose usage will be beneficial for narrowing the search window for the inhibitors.
Collapse
|