1
|
Liu Y, Li C, Gupta M, Stroud RM, Voth GA. Kinetic network modeling with molecular simulation inputs: A proton-coupled phosphate symporter. Biophys J 2024; 123:4191-4199. [PMID: 38549372 DOI: 10.1016/j.bpj.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Phosphate, an essential metabolite involved in numerous cellular functions, is taken up by proton-coupled phosphate transporters of plants and fungi within the major facilitator family. Similar phosphate transporters have been identified across a diverse range of biological entities, including various protozoan parasites linked to human diseases, breast cancer cells with increased phosphate requirements, and osteoclast-like cells engaged in bone resorption. Prior studies have proposed an overview of the functional cycle of a proton-driven phosphate transporter (PiPT), yet a comprehensive understanding of the proposed reaction pathways necessitates a closer examination of each elementary reaction step within an overall kinetic framework. In this work, we leverage kinetic network modeling in conjunction with a "bottom-up" molecular dynamics approach to show how such an approach can characterize the proton-phosphate co-transport behavior of PiPT under different pH and phosphate concentration conditions. In turn, this allows us to reveal the prevailing reaction pathway within a high-affinity phosphate transporter under different experimental conditions and to uncover the molecular origin of the optimal pH condition of this transporter.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Chenghan Li
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
2
|
Liu Y, Li C, Freites JA, Tobias DJ, Voth GA. Quantitative insights into the mechanism of proton conduction and selectivity for the human voltage-gated proton channel Hv1. Proc Natl Acad Sci U S A 2024; 121:e2407479121. [PMID: 39259593 PMCID: PMC11420211 DOI: 10.1073/pnas.2407479121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024] Open
Abstract
Human voltage-gated proton (hHv1) channels are crucial for regulating essential biological processes such as immune cell respiratory burst, sperm capacitation, and cancer cell migration. Despite the significant concentration difference between protons and other ions in physiological conditions, hHv1 demonstrates remarkable proton selectivity. Our calculations of single-proton, cation, and anion permeation free energy profiles quantitatively demonstrate that the proton selectivity of the wild-type channel originates from its strong proton affinity via the titration of the key residues D112 and D174, although the channel imposes similar kinetic blocking effects for protons compared to other ions. A two-proton knock-on model is proposed to mathematically explain the electrophysiological measurements of the pH-dependent proton conductance in the conductive state. Moreover, it is shown that the anion selectivity of the D112N mutant channel is tied to impaired proton transport and substantial anion leakage.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL 60637
| | - Chenghan Li
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL 60637
| | | | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, CA 92697
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL 60637
| |
Collapse
|
3
|
Kaiser S, Yue Z, Peng Y, Nguyen TD, Chen S, Teng D, Voth GA. Molecular Dynamics Simulation of Complex Reactivity with the Rapid Approach for Proton Transport and Other Reactions (RAPTOR) Software Package. J Phys Chem B 2024; 128:4959-4974. [PMID: 38742764 PMCID: PMC11129700 DOI: 10.1021/acs.jpcb.4c01987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Simulating chemically reactive phenomena such as proton transport on nanosecond to microsecond and beyond time scales is a challenging task. Ab initio methods are unable to currently access these time scales routinely, and traditional molecular dynamics methods feature fixed bonding arrangements that cannot account for changes in the system's bonding topology. The Multiscale Reactive Molecular Dynamics (MS-RMD) method, as implemented in the Rapid Approach for Proton Transport and Other Reactions (RAPTOR) software package for the LAMMPS molecular dynamics code, offers a method to routinely sample longer time scale reactive simulation data with statistical precision. RAPTOR may also be interfaced with enhanced sampling methods to drive simulations toward the analysis of reactive rare events, and a number of collective variables (CVs) have been developed to facilitate this. Key advances to this methodology, including GPU acceleration efforts and novel CVs to model water wire formation are reviewed, along with recent applications of the method which demonstrate its versatility and robustness.
Collapse
Affiliation(s)
- Scott Kaiser
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, James Franck
Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Zhi Yue
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, James Franck
Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yuxing Peng
- NVIDIA
Corporation, Santa
Clara, California 95051, United States
| | - Trung Dac Nguyen
- Research
Computing Center, The University of Chicago, Chicago, Illinois 60637, United States
| | - Sijia Chen
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, James Franck
Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Da Teng
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, James Franck
Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory A. Voth
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, James Franck
Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Liu Y, Li C, Voth GA. Generalized Transition State Theory Treatment of Water-Assisted Proton Transport Processes in Proteins. J Phys Chem B 2022; 126:10452-10459. [PMID: 36459423 PMCID: PMC9762399 DOI: 10.1021/acs.jpcb.2c06703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/15/2022] [Indexed: 12/03/2022]
Abstract
Transition state theory (TST) is widely employed for estimating the transition rate of a reaction when combined with free energy sampling techniques. A derivation of the transition theory rate expression for a general n-dimensional case is presented in this work which specifically focuses on water-assisted proton transfer/transport reactions, especially for protein systems. Our work evaluates the TST prefactor calculated at the transition state dividing surface compared to one sampled, as an approximation, in the reactant state in four case studies of water-assisted proton transport inside membrane proteins and highlights the significant impact of the prefactor position dependence in proton transport processes.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry, Chicago Center
for Theoretical Chemistry, James Franck Institute, and Institute for
Biophysical Dynamics, The University of
Chicago, Chicago, Illinois60637, United States
| | - Chenghan Li
- Department of Chemistry, Chicago Center
for Theoretical Chemistry, James Franck Institute, and Institute for
Biophysical Dynamics, The University of
Chicago, Chicago, Illinois60637, United States
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center
for Theoretical Chemistry, James Franck Institute, and Institute for
Biophysical Dynamics, The University of
Chicago, Chicago, Illinois60637, United States
| |
Collapse
|