1
|
El Hage K, Dhayalan B, Chen Y, Phillips NB, Whittaker J, Carr K, Whittaker L, Phillips MH, Ismail‐Beigi F, Meuwly M, Weiss MA. Stabilization of a protein by a single halogen-based aromatic amplifier. Protein Sci 2025; 34:e70064. [PMID: 39969055 PMCID: PMC11837044 DOI: 10.1002/pro.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/20/2025]
Abstract
The utility of halogenation in protein design is investigated by a combination of quantitative atomistic simulations and experiment. Application to insulin is of complementary basic and translational interest. In a singly halogenated aromatic ring, regiospecific inductive effects were predicted to modulate multiple surrounding electrostatic (weakly polar) interactions, thereby amplifying changes in thermodynamic stability. In accordance with the simulations, we demonstrated stabilization of insulin by single halogen atoms at the ortho position of an invariant phenylalanine (2-F-PheB24, 2-Cl-PheB24, and 2-Br-PheB24; ΔΔGu = -0.5 to -1.0 kcal/mol) located at the edge of a protein crevice; corresponding meta and para substitutions had negligible effects. Although receptor-binding affinities were generally decreased (in accordance with packing of the native Phe at the hormone-receptor interface), the ortho-analogs retained biological activity in mammalian cells and in a rat model of diabetes mellitus. Further, the ortho-modified analogs exhibited enhanced resistance to fibrillation above room temperature in two distinct assays of physical stability. Regiospecific halo-aromatic stabilization may thus augment the shelf life of pharmaceutical insulin formulations under real-world conditions. This approach, extending principles of medicinal chemistry, promises to apply to a broad range of therapeutic proteins and vaccines whose biophysical stabilization would enhance accessibility in the developing world.
Collapse
Affiliation(s)
- Krystel El Hage
- Department of ChemistryUniversity of BaselBaselSwitzerland
- Qubit PharmaceuticalsParisFrance
| | - Balamurugan Dhayalan
- Department of Biochemistry & Molecular BiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Yen‐Shan Chen
- Department of Biochemistry & Molecular BiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Nelson B. Phillips
- Department of BiochemistryCase Western Reserve UniversityClevelandOhioUSA
| | - Jonathan Whittaker
- Department of BiochemistryCase Western Reserve UniversityClevelandOhioUSA
| | - Kelley Carr
- Department of BiochemistryCase Western Reserve UniversityClevelandOhioUSA
| | - Linda Whittaker
- Department of BiochemistryCase Western Reserve UniversityClevelandOhioUSA
| | | | - Faramarz Ismail‐Beigi
- Department of BiochemistryCase Western Reserve UniversityClevelandOhioUSA
- Department of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Markus Meuwly
- Department of ChemistryUniversity of BaselBaselSwitzerland
| | - Michael A. Weiss
- Department of Biochemistry & Molecular BiologyIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
2
|
Shukla VK, Karunanithy G, Vallurupalli P, Hansen DF. A combined NMR and deep neural network approach for enhancing the spectral resolution of aromatic side chains in proteins. SCIENCE ADVANCES 2024; 10:eadr2155. [PMID: 39705363 PMCID: PMC11801238 DOI: 10.1126/sciadv.adr2155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/15/2024] [Indexed: 12/22/2024]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is an important technique for deriving the dynamics and interactions of macromolecules; however, characterizations of aromatic residues in proteins still pose a challenge. Here, we present a deep neural network (DNN), which transforms NMR spectra recorded on simple uniformly 13C-labeled samples to yield high-quality 1H-13C correlation maps of aromatic side chains. Key to the success of the DNN is the design of NMR experiments that produce data with unique features to aid the DNN produce high-resolution spectra. The methodology was validated experimentally on protein samples ranging from 7 to 40 kDa in size, where it accurately reconstructed multidimensional aromatic 1H-13C correlation maps, to facilitate 1H-13C chemical shift assignments and to quantify kinetics. More generally, we believe that the strategy of designing new NMR experiments in combination with customized DNNs represents a substantial advance that will have a major impact on the study of molecules using NMR in the years to come.
Collapse
Affiliation(s)
- Vaibhav Kumar Shukla
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Gogulan Karunanithy
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India
| | - D. Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
- The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
3
|
Joshi K, Bhuyan AK. Glycerol-slaved 1H- 1H NMR cross-relaxation in quasi-native lysozyme. Biophys Chem 2024; 312:107286. [PMID: 38964115 DOI: 10.1016/j.bpc.2024.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
1H-1H nuclear cross-relaxation experiments have been carried out with lysozyme in variable glycerol viscosity to study intramolecular motion, self-diffusion, and isotropic rigid-body rotational tumbling at 298 K, pH 3.8. Dynamics of intramolecular 1H-1H cross-relaxation rates, the increase in internuclear spatial distances, and lateral and rotational diffusion coefficients all show fractional viscosity dependence with a power law exponent κ in the 0.17-0.83 range. The diffusion coefficient of glycerol Ds with the bulk viscosity itself is non-Stokesian, having a fractional viscosity dependence on the medium viscosity (Ds ∼ η-κ, κ ≈ 0.71). The concurrence and close similarity of the fractional viscosity dependence of glycerol diffusion on the one hand, and diffusion and intramolecular cross-relaxation rates of the protein on the other lead to infer that relaxation of glycerol slaves protein relaxations. Glycerol-transformed native lysozyme to a quasi-native state does not affect the conclusion that both global and internal fluctuations are slaved to glycerol relaxation.
Collapse
Affiliation(s)
- Kirthi Joshi
- School of Chemistry, University of Hyderabad, Hyderabad 50046, India
| | - Abani K Bhuyan
- School of Chemistry, University of Hyderabad, Hyderabad 50046, India.
| |
Collapse
|
4
|
Raum HN, Modig K, Akke M, Weininger U. Proton Transfer Kinetics in Histidine Side Chains Determined by pH-Dependent Multi-Nuclear NMR Relaxation. J Am Chem Soc 2024; 146:22284-22294. [PMID: 39103163 PMCID: PMC11328173 DOI: 10.1021/jacs.4c04647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Histidine is a key amino-acid residue in proteins with unique properties engendered by its imidazole side chain that can exist in three different states: two different neutral tautomeric forms and a protonated, positively charged one with a pKa value close to physiological pH. Commonly, two or all three states coexist and interchange rapidly, enabling histidine to act as both donor and acceptor of hydrogen bonds, coordinate metal ions, and engage in acid/base catalysis. Understanding the exchange dynamics among the three states is critical for assessing histidine's mechanistic role in catalysis, where the rate of proton exchange and interconversion among tautomers might be rate limiting for turnover. Here, we determine the exchange kinetics of histidine residues with pKa values representative of the accessible range from 5 to 9 by measuring pH-dependent 15N, 13C, and 1H transverse relaxation rate constants for 5 nuclei in each imidazole. Proton exchange between the imidazole and the solvent is mediated by hydronium ions at acidic and neutral pH, whereas hydroxide mediated exchange becomes the dominant mechanism at basic pH. Proton transfer is very fast and reaches the diffusion limit for pKa values near neutral pH. We identify a direct pathway between the two tautomeric forms, likely mediated by a bridging water molecule or, in the case of high pH, hydroxide ion. For histidines with pKa 7, we determine all rate constants (lifetimes) involving protonation over the entire pH range. Our approach should enable critical insights into enzymatic acid/base catalyzed reactions involving histidines in proteins.
Collapse
Affiliation(s)
- Heiner N Raum
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, Halle (Saale) D-06120, Germany
| | - Kristofer Modig
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| | - Mikael Akke
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| | - Ulrich Weininger
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, Halle (Saale) D-06120, Germany
| |
Collapse
|
5
|
Qianzhu H, Abdelkader EH, Otting G, Huber T. Genetic Encoding of Fluoro-l-tryptophans for Site-Specific Detection of Conformational Heterogeneity in Proteins by NMR Spectroscopy. J Am Chem Soc 2024; 146:13641-13650. [PMID: 38687675 DOI: 10.1021/jacs.4c03743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The substitution of a single hydrogen atom in a protein by fluorine yields a site-specific probe for sensitive detection by 19F nuclear magnetic resonance (NMR) spectroscopy, where the absence of background signal from the protein facilitates the detection of minor conformational species. We developed genetic encoding systems for the site-selective incorporation of 4-fluorotryptophan, 5-fluorotryptophan, 6-fluorotryptophan, and 7-fluorotryptophan in response to an amber stop codon and used them to investigate conformational heterogeneity in a designed amino acid binding protein and in flaviviral NS2B-NS3 proteases. These proteases have been shown to present variable conformations in X-ray crystal structures, including flips of the indole side chains of tryptophan residues. The 19F NMR spectra of different fluorotryptophan isomers installed at the conserved site of Trp83 indicate that the indole ring flip is common in flaviviral NS2B-NS3 proteases in the apo state and suppressed by an active-site inhibitor.
Collapse
Affiliation(s)
- Haocheng Qianzhu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Elwy H Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
6
|
Kotschy J, Söldner B, Singh H, Vasa SK, Linser R. Microsecond Timescale Conformational Dynamics of a Small-Molecule Ligand within the Active Site of a Protein. Angew Chem Int Ed Engl 2024; 63:e202313947. [PMID: 37974542 DOI: 10.1002/anie.202313947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/03/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
The possible internal dynamics of non-isotope-labeled small-molecule ligands inside a target protein is inherently difficult to capture. Whereas high crystallographic temperature factors can denote either static disorder or motion, even moieties with very low B-factors can be subject to vivid motion between symmetry-related sites. Here we report the experimental identification of internal μs timescale dynamics of a high-affinity, natural-abundance ligand tightly bound to the enzyme human carbonic anhydrase II (hCAII) even within a crystalline lattice. The rotamer jumps of the ligand's benzene group manifest themselves both, in solution and fast magic-angle spinning solid-state NMR 1 H R1ρ relaxation dispersion, for which we obtain further mechanistic insights from molecular-dynamics (MD) simulations. The experimental confirmation of rotameric jumps in bound ligands within proteins in solution or the crystalline state may improve understanding of host-guest interactions in biology and supra-molecular chemistry and may facilitate medicinal chemistry for future drug campaigns.
Collapse
Affiliation(s)
- Julia Kotschy
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Benedikt Söldner
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Himanshu Singh
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Suresh K Vasa
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Rasmus Linser
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| |
Collapse
|
7
|
Napoli F, Becker LM, Schanda P. Protein dynamics detected by magic-angle spinning relaxation dispersion NMR. Curr Opin Struct Biol 2023; 82:102660. [PMID: 37536064 DOI: 10.1016/j.sbi.2023.102660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023]
Abstract
Magic-angle spinning (MAS) nuclear magnetic resonance (NMR) is establishing itself as a powerful method for the characterization of protein dynamics at the atomic scale. We discuss here how R1ρ MAS relaxation dispersion NMR can explore microsecond-to-millisecond motions. Progress in instrumentation, isotope labeling, and pulse sequence design has paved the way for quantitative analyses of even rare structural fluctuations. In addition to isotropic chemical-shift fluctuations exploited in solution-state NMR relaxation dispersion experiments, MAS NMR has a wider arsenal of observables, allowing to see motions even if the exchanging states do not differ in their chemical shifts. We demonstrate the potential of the technique for probing motions in challenging large enzymes, membrane proteins, and protein assemblies.
Collapse
Affiliation(s)
- Federico Napoli
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400, Austria. https://twitter.com/iomichiamofede
| | - Lea Marie Becker
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400, Austria. https://twitter.com/bckrlea
| | - Paul Schanda
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400, Austria.
| |
Collapse
|
8
|
Van Raad D, Huber T, Otting G. Improved spectral resolution of [ 13C, 1H]-HSQC spectra of aromatic amino acid residues in proteins produced by cell-free synthesis from inexpensive 13C-labelled precursors. JOURNAL OF BIOMOLECULAR NMR 2023; 77:183-190. [PMID: 37338652 PMCID: PMC10406723 DOI: 10.1007/s10858-023-00420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Cell-free protein synthesis using eCells allows production of amino acids from inexpensive 13C-labelled precursors. We show that the metabolic pathway converting pyruvate, glucose and erythrose into aromatic amino acids is maintained in eCells. Judicious choice of 13C-labelled starting material leads to proteins, where the sidechains of aromatic amino acids display [13C,1H]-HSQC cross-peaks free of one-bond 13C-13C couplings. Selective 13C-labelling of tyrosine and phenylalanine residues is achieved simply by using different compositions of the reaction buffers.
Collapse
Affiliation(s)
- Damian Van Raad
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|