1
|
Andrews B. Amino Acid Residue-Specific Ramachandran Distributions Derived from a Simple Mean Field Potential. ACS PHYSICAL CHEMISTRY AU 2024; 4:707-719. [PMID: 39634645 PMCID: PMC11613349 DOI: 10.1021/acsphyschemau.4c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 12/07/2024]
Abstract
Protein dynamics in the unfolded state, in the context of early stage protein folding or intrinsically disordered proteins (IDPs), is not well understood. The discovery of IDPs, and their sequence-dependent dynamics, has led to many computational and experimental investigations regarding the conformational preferences of short oligopeptides and individual amino acid residues in the unfolded state. As proteins consist of sequences of amino acid residues, characterizing the intrinsic conformational preferences of the individual residues in the unfolded state is crucial for understanding the emergent conformations of peptides and proteins. While advances have been made in understanding conformational preferences, the atomistic mechanisms driving these preferences remain unresolved. In this work, we show that the distributions of atomic overlaps between backbone and side chain atoms in Ramachandran space are unique for amino acid residue mimetic structures alanine, valine, leucine, and isoleucine in Ramachandran space indicating unique intrapeptide energy landscapes for each residue. We then construct a mean field potential consisting of only an empirical peptide backbone-water and average intrapeptide Lennard-Jones contributions to explore their influence on the conformational preferences. With this fairly simple model, we were able to produce Ramachandran distributions that qualitatively agree with previously reported experimental and computational predictions about the conformational preferences of these amino acid residues in the unfolded state in water. Our results indicate these conformational preferences are the result of the balance between pPII-stabilizing backbone-water interactions and repulsive side chain-backbone interactions where the latter will depend uniquely on the atomic makeup and geometry of the side chain.
Collapse
Affiliation(s)
- Brian Andrews
- Department of Physics, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| |
Collapse
|
2
|
Andrews B, Schweitzer-Stenner R, Urbanc B. Intrinsic Conformational Dynamics of Glycine and Alanine in Polarizable Molecular Dynamics Force Fields: Comparison to Spectroscopic Data. J Phys Chem B 2024; 128:6217-6231. [PMID: 38877893 PMCID: PMC11215781 DOI: 10.1021/acs.jpcb.4c02278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Molecular dynamics (MD) is a great tool for elucidating conformational dynamics of proteins and peptides in water at the atomistic level that often surpasses the level of detail available experimentally. Structure predictions, however, are limited by the accuracy of the underlying MD force field. This limitation is particularly stark in the case of intrinsically disordered peptides and proteins, which are characterized by solvent-accessible and disordered peptide regions and domains. Recent studies show that most additive MD force fields, including CHARMM36m, do not reproduce the intrinsic conformational distributions of guest amino acid residues x in cationic GxG peptides in water in line with experimental data. Positing that a lack of polarizability in additive MD force fields may be the culprit for the reported discrepancies, we here examine the conformational dynamics of guest glycine and alanine residues in cationic GxG peptides in water using two polarizable MD force fields, CHARMM Drude and AMOEBA. Our results indicate that while AMOEBA captures the experimental data better than CHARMM Drude, neither of the two polarizable force fields offers an improvement of the Ramachandran distributions of glycine and alanine residues in cationic GGG and GAG peptides, respectively, over CHARMM36m.
Collapse
Affiliation(s)
- Brian Andrews
- Department
of Physics, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | | | - Brigita Urbanc
- Department
of Physics, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Zhao J, Yu P, Dong T, Wu Y, Yang F, Wang J. Chasing weakly-bound biological water in aqueous environment near the peptide backbone by ultrafast 2D infrared spectroscopy. Commun Chem 2024; 7:82. [PMID: 38605209 PMCID: PMC11009226 DOI: 10.1038/s42004-024-01170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
There has been a long-standing debate as to how many hydrogen bonds a peptide backbone amide can form in aqueous solution. Hydrogen-bonding structural dynamics of N-ethylpropionamide (a β-peptide model) in water was examined using infrared (IR) spectroscopy. Two amide-I sub bands arise mainly from amide C=O group that forms strong H-bonds with solvent water molecules (SHB state), and minorly from that involving one weak H-bond with water (WHB state). This picture is supported by molecular dynamics simulations and ab-initio calculations. Further, thermodynamics and kinetics of the SHB and WHB species were examined mainly by chemical-exchange two-dimensional IR spectroscopy, yielding an activation energy for the SHB-to-WHB exchange of 13.25 ± 0.52 kJ mol‒1, which occurs in half picosecond at room temperature. Our results provided experimental evidence of an unstable water molecule near peptide backbone, allowing us to gain more insights into the dynamics of the protein backbone hydration.
Collapse
Affiliation(s)
- Juan Zhao
- Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengyun Yu
- Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tiantian Dong
- Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanzhou Wu
- Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Yang
- Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianping Wang
- Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Schweitzer-Stenner R. The relevance of short peptides for an understanding of unfolded and intrinsically disordered proteins. Phys Chem Chem Phys 2023; 25:11908-11933. [PMID: 37096579 DOI: 10.1039/d3cp00483j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Over the last thirty years the unfolded state of proteins has attracted considerable interest owing to the discovery of intrinsically disordered proteins which perform a plethora of functions despite resembling unfolded proteins to a significant extent. Research on both, unfolded and disordered proteins has revealed that their conformational properties can deviate locally from random coil behavior. In this context results from work on short oligopeptides suggest that individual amino acid residues sample the sterically allowed fraction of the Ramachandran plot to a different extent. Alanine has been found to exhibit a peculiarity in that it has a very high propensity for adopting polyproline II like conformations. This Perspectives article reviews work on short peptides aimed at exploring the Ramachandran distributions of amino acid residues in different contexts with experimental and computational means. Based on the thus provided overview the article discussed to what extent short peptides can serve as tools for exploring unfolded and disordered proteins and as benchmarks for the development of a molecular dynamics force field.
Collapse
|