1
|
Dhiman S, Kumar G, Kour R, Kaur S, Luxami V, Singh P, Kumar S. A red-emissive tripodal nanoprobe for the discrimination of serum albumin with conformational change from Y- to ω-like and probing mitochondrial viscosity. J Mater Chem B 2025; 13:5634-5642. [PMID: 40260683 DOI: 10.1039/d5tb00128e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Serum albumins, such as bovine serum albumin (BSA) and human serum albumin (HSA), play a crucial role in various biological processes. Discrimination between BSA and HSA is challenging due to their similar structures and reactivity. Here, we report mitochondria-targeted red fluorescent tripodal nanoprobe DMAS-TP, forming spherical nano-aggregates (∼90 nm) in water for discrimination of BSA over HSA and detection and imaging of viscosity in HeLa cells. DMAS-TP exhibits an ∼56-fold fluorescence intensity increase in 95% glycerol compared to water, which indicates restricted movement in high-viscosity solvents. Furthermore, the addition of 5 equiv. BSA and HSA to DMAS-TP solution displays ∼50-fold and ∼10-fold fluorescence intensity increases at 630 nm (λex 490 nm), respectively, and can detect as low as 20 nM BSA and 140 nM HSA. The fluorescence anisotropy plot shows that the DMAS-TP anisotropy values decrease from 0.234 to 0.185 with increasing [BSA/HSA], suggesting a conformational change from Y- to ω-like structure. The fluorescence lifetime of DMAS-TP increases gradually with BSA/HSA, suggesting dynamic complexation. DMAS-TP aggregates diminish to 6 nm particles when encapsulated in BSA confirmed by DLS, SEM, and TEM, with reduced fluorescence intensity in the presence of bilirubin, indicating that DMAS-TP binds within the BSA cavity near site IB. DMAS-TP is highly permeable to HeLa cells and shows a strong affinity for mitochondria, making it suitable for imaging viscosity and BSA via strong fluorescence in the red channel.
Collapse
Affiliation(s)
- Sukhvinder Dhiman
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India.
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Gulshan Kumar
- Department of Chemistry, Banasthali University, Banasthali Newai 304022, Rajasthan, India
| | - Rasdeep Kour
- Department of Botanical and Environment Science, Guru Nanak Dev University, Amritsar 143005, India
| | - Satwinderjeet Kaur
- Department of Botanical and Environment Science, Guru Nanak Dev University, Amritsar 143005, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Prabhpreet Singh
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Subodh Kumar
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
2
|
Yang X, Li T, Chen X, Zhang H, Liu C, Tao C, Nie H. Tetraphenylethylene-indole as a novel fluorescent probe for selective and sensitive detection of human serum albumin (HSA) in biological matrices and monitoring of HSA purity and degradation. Talanta 2025; 286:127471. [PMID: 39736207 DOI: 10.1016/j.talanta.2024.127471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/09/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
Human serum albumin (HSA) levels in serum and urine is a crucial biomarker for diagnosing liver and kidney diseases. HSA is used to treat various disorders in clinical practice and as an excipient in the production of vaccine or protein drug, ensuring its purity essential for patient safety. However, selective and sensitive detection of HSA remains challenging due to its structural similarity with bovine serum albumin (BSA) and the inherent complexity of biological matrices. This study presents a novel application of the tetraphenylethylene-indole (TPE-indo) fluorophore for the identification and quantification of HSA. The findings demonstrate that TPE-indo binds specifically to HSA in a 1:1 M ratio, thereby triggering its aggregation-induced emission (AIE) mechanism and producing a selective, sensitive, and rapid "turn-on" fluorescence response. The fluorescence intensity of TPE-indo exhibited minimal interference from proteins, amino acids, sugars, ions, and urine metabolites, and demonstrated a linear correlation with HSA concentration up to 60 μg/mL, with a limit of detection of 0.30 μg/mL. Furthermore, TPE-indo displays a markedly enhanced response to HSA in comparison to BSA, which can be ascribed to the distinct binding modes between TPE-indo and these two proteins. TPE-indo can be used to quantify HSA in serum, grade proteinuria samples, detect BSA adulteration in HSA samples, and real-time monitor HSA degradation processes. This study not only advances the development of efficient HSA detection methods but also highlights the significance of TPE-indo as a versatile tool for bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Xueping Yang
- Key Laboratory of Public Health Safety of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, School of Public Health, Hebei University, Baoding, 071002, PR China
| | - Taoran Li
- Key Laboratory of Public Health Safety of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, School of Public Health, Hebei University, Baoding, 071002, PR China
| | - Xu Chen
- Key Laboratory of Public Health Safety of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, School of Public Health, Hebei University, Baoding, 071002, PR China
| | - Huan Zhang
- Key Laboratory of Public Health Safety of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, School of Public Health, Hebei University, Baoding, 071002, PR China
| | - Chao Liu
- Department of Statistics, Hebei University, Baoding, 071002, PR China.
| | - Chenchuang Tao
- Key Laboratory of Public Health Safety of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, School of Public Health, Hebei University, Baoding, 071002, PR China
| | - Hailiang Nie
- Key Laboratory of Public Health Safety of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, School of Public Health, Hebei University, Baoding, 071002, PR China
| |
Collapse
|
3
|
Lv X, Huang W, Jiang N, Bao Y, Qu Y, Zou W, Luo Y, Wang L, Shang C. A-D-A type fluorescent probe with dual quaternary-ammonium-salt anchors for turn on detection of HSA in wide emission gamut. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 331:125772. [PMID: 39864182 DOI: 10.1016/j.saa.2025.125772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/25/2024] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
Human serum albumin (HSA) is a key protein implicates in various physiological and pathological conditions such as renal injury, diabetes mellitus. Herein, we report an AIE-active fluorescent probe (DNI-4) for detection of HSA with a "turn on" response covering visible and near-infrared region (500 - 800 nm). Combining with a triphenylamine and two 1,8-naphthalimide moieties, the chromophore segment of DNI-4 forms a "A-D-A" type molecular architecture with the twisted intramolecular charge transfer property. Two quaternary ammonium salt moieties are introduced into the chromophore to give the probe (DNI-4), which has good hydrophilicity and can interact with HSA to form the dye-HSA aggregates with "turn-on" signal. DNI-4 demonstrates a good linear correlation over a low concentration range of HSA from 0 to 0.2 μM (R2 = 0.9995), with a limit of detection (LOD) as low as 15 nM. We tested the diameters and potential values of DNI-4 and HSA to disclose the variation in microstructure before and after the recognition event. Furthermore, we test and compare the sensitivity and association constants of DNI-4 and two control compounds, neutral DNI-1 and mono-quaternary-ammonium-salt-substituted DNI-5. The results indicate the electronic interaction is a key factor for recognition and DNI-4 with the most positive groups is the best probe for HSA. At last, DNI-4 is successfully applied to probe HSA in the Hela cells indicating the potential application in fluorescent sensing and bioimaging.
Collapse
Affiliation(s)
- Xinyu Lv
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620 China
| | - Wenling Huang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620 China
| | - Na Jiang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620 China
| | - Ying Bao
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620 China
| | - Yi Qu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620 China.
| | - Wancheng Zou
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122 China
| | - Yuedan Luo
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620 China
| | - Le Wang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620 China.
| | - Chao Shang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122 China.
| |
Collapse
|
4
|
He ZC, Zhang T, Lu XF, Li R, Peng W, Ding F. Assessing the environmental risks of sulfonylurea pollutants: Insights into the risk priority and structure-toxicity relationships. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117973. [PMID: 40020385 DOI: 10.1016/j.ecoenv.2025.117973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Sulfonylureas are widely used herbicides globally; however, the health risks associated with exposure to these compounds are poorly understood. This study used fuzzy clustering to categorize 44 sulfonylurea compounds into three risk priority levels (I, II, and III) and further investigated their structure-toxicity relationships. The order of the risk priority levels was level I<level II<level III. The pecking order of protein affinity was on the order of 104 M-1, which was consistent with the order of the risk priority levels. Moreover, toxic conjugations induced significant changes in protein conformation, with high-risk sulfonylurea causing substantial conformational changes. Given that the conformations of sulfonylurea within the reactive domain were highly similar, the patterns of toxic actions were considerably similar as well. Structure-toxicity relationship analysis indicated a positive correlation among Gibbs free energy change (ΔG°), affinity between sulfonylurea and protein, logarithm of the octanol-water partition coefficient (logKow), and risk priority. Specifically, a higher ΔG° value corresponded to stronger affinity, and a higher logKow value corresponded to a higher environment risk. The electronegativity of the aromatic ring on the left side of the sulfonylurea molecule is a key determinant influencing affinity - higher electronegativity of this aromatic ring weakened the affinity of sulfonylurea for protein and reduced the risk. When the aromatic ring on the left side of sulfonylurea was consistent, an increase in the electronegativity of the heterocyclic ring on the right side resulted in a stronger affinity for protein and an increased risk. This study provides a mechanistic foundation for evaluating the health risks associated with exposure to sulfonylurea.
Collapse
Affiliation(s)
- Zhi-Cong He
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Tao Zhang
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Xin-Fang Lu
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Rui Li
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Wei Peng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Fei Ding
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China; College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Ding BW, Sang RX, Li XY, Fan J, Tian Y, Ma Y, Xie CZ, Xu JY, Feng YK. A self-assembled fluorescent nanoprobe recognized by FA1 site for specifically selecting HSA: Its applications in hemin detection, cell imaging and fluorescent tracing drug delivery. Bioorg Chem 2025; 154:108120. [PMID: 39753041 DOI: 10.1016/j.bioorg.2024.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
As naturally essential biomacromolecule, HSA has become diagnostic indicators for various diseases and universal carriers for anticancer drug delivery, therefore, fluorescence detection and labeling for HSA possess significant application value in the biomedical field. In this paper, hydrazide Schiff base fluorescent probe NDQC was designed and synthesized, which self-assembled into nanoparticles in aqueous solution system and demonstrated excellent selectivity and sensitivity towards HSA. Through displacement assay and molecular docking simulation, the binding of NDQC with HSA in FA1 site was demonstrated, thereby no obvious fluorescence signal presented for homologous protein BSA due to their structural differences in binding site. Non-toxic probe NDQC is suitable for the fluorescence imaging of HSA in cells, and colocalization fluorescence images showed that NDQC-HSA could illuminate mitochondria. Based on the pH sensitivity of fluorescence emission for NDQC-HSA, discrimination of cancer cells and normal cells could be achieved. For practical applications, NDQC-HSA can be employed to measure the content of hemin. More importantly, NDQC could fluorescently label HSA and therefore NDQC-HSA complex act as the carrier for loading cisplatin. The present findings demonstrate that the probe NDQC has potential in exploring HSA at cellular levels and hold great promise in application of tracking drug-loading nanoparticles.
Collapse
Affiliation(s)
- Bo-Wen Ding
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Department of Breast Oncoplastic and reconstructive Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Ruo-Xi Sang
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xiao-Yu Li
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Normal University, Guilin 541004, China
| | - Jing Fan
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yu Tian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Ying Ma
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Cheng-Zhi Xie
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Normal University, Guilin 541004, China.
| | - Jing-Yuan Xu
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Yu-Kuan Feng
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
6
|
Deng YD, Liu Q, Wang D, Pan ZW, Du TT, Yuan ZX, Yi WJ. Bridged triphenylamine-based fluorescent probe for selective and direct detection of HSA in urine. Bioorg Chem 2024; 152:107742. [PMID: 39186916 DOI: 10.1016/j.bioorg.2024.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Human serum albumin (HSA) serves as a crucial indicator for therapeutic monitoring and biomedical diagnosis. In this study, a near infrared (NIR) fluorescent probe, termed BTPA, characterized a donor-π-acceptor (D-π-A) structure based on bridged triphenylamine (TPA) was developed. BTPA exhibited outstanding sensitivity and selectivity towards HSA among various analysts, with a remarkable 50-fold fluorescence enhancement with a significant Stokes shift (∼190 nm) and a wide linear detection range of 0-20 μM of HSA. Especially, BTPA displayed selectivity for discrimination of HSA from BSA. Job's Plot analysis suggested a 1:1 stoichiometry for the formation of the BTPA-HSA complex. Displacement assays and molecular docking demonstrated that BTPA binds to subdomain IB of HSA which could effectively avoid interference from most drugs. Besides, BTPA have good biocompatibility and could detect of exogenous HSA with a relatively low fluorescence background. For practical applications, BTPA was tested for detecting HSA levels in human urine without any pretreatment, showing detection capability in the range of 0-10 μM with a fast response (<30 s), a limit of detection (LOD) of 0.12 μM and good recoveries (81.7-92.9 %), highlighting the high performance of bridged triphenylamine-based probe BTPA.
Collapse
Affiliation(s)
- Yu-Dan Deng
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qiang Liu
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Deyu Wang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Zhi-Wei Pan
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai - Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Ting-Ting Du
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Zhi-Xiang Yuan
- Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Wen-Jing Yi
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai - Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
7
|
Lu C, Xu L, Jiang Y, Liao C, Li Y, Tang Y, Xu Z, Du X, Lv T, Wang Y, Qin T, Liu B, Zhu M. Sensitive and accurate monitoring of urinary albumin and point-of-care testing using a fluorescent probe with anti-interference capacity against exogenous drugs. Talanta 2024; 279:126575. [PMID: 39024852 DOI: 10.1016/j.talanta.2024.126575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Fluorescent probes have been reported for monitoring urinary albumin (u-ALB) to enable early diagnosis of kidney diseases and facilitate regular point-of-care testing (POCT) for chronic kidney disease (CKD) patients. However, the albumin can bind hydrophobic drugs through host-guest interactions, which may result in decreased accuracy of probes at regular drug sites and hamper POCT of albuminuria since CKD patients often need to take medications routinely. Herein, we reported a novel fluorescent probe (NC-2) by molecular engineering of a reported AIEgen (NC-1). The introduction of a non-conjugated ring moiety to the molecular rotor granted the NC-2 enhanced sensitivity with a limit of detection in urine of 8.7 mg/L, which is below l the threshold of microalbuminuria (30 mg/L). Moreover, the NC-2 was found to preferentially bind to the FA1 site of ALB, conferring it with excellent anti-interference capacities against exogenous drug molecules and metabolites. Simulation experiments using lab-spiked urine samples containing common drugs taken by CKD patients demonstrated that the probe could provide satisfied detecting accuracy (80-90 %). Furthermore, a paper-based device was constructed and achieved on-site detection of u-ALB in qualitative and semi-quantitative manners. Findings in this work were of great significance to the development of fluorescent probes for accurate detection of ALB in complex urine samples and the further achievement of fluorescence-based POCT for CKD.
Collapse
Affiliation(s)
- Cuizhen Lu
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China; One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Liang Xu
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China; One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Yu Jiang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China; One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Caiqiang Liao
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China; One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Yixin Li
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China; One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Yinghao Tang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China; One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Zhongyong Xu
- College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xinfeng Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Taoyuze Lv
- School of Physics, The University of Sydney, NSW, 2006, Australia
| | - Yalong Wang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China; One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Tianyi Qin
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China; One Health Institute, Hainan University, Haikou, Hainan, 570228, China.
| | - Bin Liu
- College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Mingqiang Zhu
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China; One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
8
|
Kanneth SS, Saheer VC, Chakkumkumarath L. 1,4-Dihydropyridine-based FA1 site-specific fluorescent probes for the selective detection and quantification of HSA levels in biofluids. Analyst 2024; 149:4633-4642. [PMID: 39104182 DOI: 10.1039/d4an00881b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Human serum albumin (HSA) is a multifunctional circulatory protein essential for many physiological processes including oncotic pressure maintenance, ligand/drug binding and transport, antioxidant activity, etc. Abnormal HSA levels in biological fluids have been reported in a variety of clinical disorders, making it a potential biomarker for early diagnosis. Low serum albumin levels have been linked to increased long- and short-term mortality rates in ICU patients. Therefore, quantifying HSA in biofluids such as serum and urine offers a convenient approach for the early identification of underlying clinical conditions and assessing the risk factors. Herein, we report a series of fluorescent 1,4-dihydropyridine (DHP) derivatives for the detection and quantification of HSA in biofluids. Their response towards HSA can be tuned by varying the substituents at the C-4 and the N-1 of the DHP ring. Depending on the nature of the substituents, they generated either a turn-on or ratiometric response with a LoD in low nanomolar or subnanomolar levels. A pair of enantiomers obtained by introducing a chiral center on the N-substituents highlighted the importance of stereochemistry in HSA-ligand interactions. Quantification of HSA in complex biofluids, such as blood serum and urine, was also accomplished using these probes. The high selectivity of some of the probes towards HSA over the homologous BSA allowed the discrimination of these two proteins. The preferred binding location of the probes was the hemin binding site and the detection mechanism was identified as the restriction of intramolecular rotation. Additionally, a prototype of a smartphone-integrated point-of-care device was also fabricated to demonstrate the feasibility of utilizing these probes in clinical settings.
Collapse
Affiliation(s)
- S Shurooque Kanneth
- Department of Chemistry, National Institute of Technology Calicut, Calicut-673601, Kerala, India.
| | - V C Saheer
- Department of Chemistry, Government College Kasaragod, Vidyanagar, Kasaragod-671123, Kerala, India
| | - Lakshmi Chakkumkumarath
- Department of Chemistry, National Institute of Technology Calicut, Calicut-673601, Kerala, India.
| |
Collapse
|
9
|
Saczuk K, Dudek M, Matczyszyn K, Deiana M. Advancements in molecular disassembly of optical probes: a paradigm shift in sensing, bioimaging, and therapeutics. NANOSCALE HORIZONS 2024; 9:1390-1416. [PMID: 38963132 DOI: 10.1039/d4nh00186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The majority of self-assembled fluorescent dyes suffer from aggregation-caused quenching (ACQ), which detrimentally affects their diagnostic and therapeutic effectiveness. While aggregation-induced emission (AIE) active dyes offer a promising solution to overcome this limitation, they may face significant challenges as the intracellular environment often prevents aggregation, leading to disassembly and posing challenges for AIE fluorogens. Recent progress in signal amplification through the disassembly of ACQ dyes has opened new avenues for creating ultrasensitive optical sensors and enhancing phototherapeutic outcomes. These advances are well-aligned with cutting-edge technologies such as single-molecule microscopy and targeted molecular therapies. This work explores the concept of disaggregation-induced emission (DIE), showcasing the revolutionary capabilities of DIE-based dyes from their design to their application in sensing, bioimaging, disease monitoring, and treatment in both cellular and animal models. Our objective is to provide an in-depth comparison of aggregation versus disaggregation mechanisms, aiming to stimulate further advancements in the design and utilization of ACQ fluorescent dyes through DIE technology. This initiative is poised to catalyze scientific progress across a broad spectrum of disciplines.
Collapse
Affiliation(s)
- Karolina Saczuk
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| | - Marta Dudek
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| | - Katarzyna Matczyszyn
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM(2)), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Marco Deiana
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| |
Collapse
|
10
|
Iwamoto N, Kai T, Inuki S, Ohno H, Maeda H, Watanabe H, Maruyama T, Oishi S. Mirror-Image Human Serum Albumin Domain III as a Tool for Analyzing Site II-Dependent Molecular Recognition. Bioconjug Chem 2024; 35:816-825. [PMID: 38781049 DOI: 10.1021/acs.bioconjchem.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Human serum albumin (HSA) as a drug carrier can significantly improve the pharmacokinetic profiles of short-lived therapeutics. Conjugation of albumin-binding moieties (ABMs) to therapeutic agents may prolong their serum half-life by promoting their association with endogenous HSA. To discover a new molecular class of ABMs from mirror-image chemical space, a preparation protocol for bioactive HSA domain III and its d-enantiomer (d-HSA domain III) was established. Structural and functional analyses suggested that the synthetic protein enantiomers exhibited mirror-image structures and stereoselective neonatal fragement crystallizable receptor (FcRn) recognition. Additionally, the ligand-binding properties of synthetic l-HSA domain III were comparable with those of site II in native HSA, as confirmed using site II-selective fluorescent probes and an esterase substrate. Synthetic d-HSA domain III is an attractive tool for analyzing the site II-dependent molecular recognition properties of HSA.
Collapse
Affiliation(s)
- Naoya Iwamoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo ku, Kyoto 606-8501, Japan
| | - Takuma Kai
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo ku, Kyoto 606-8501, Japan
| | - Hitoshi Maeda
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hiroshi Watanabe
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Toru Maruyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo ku, Kyoto 606-8501, Japan
- Laboratory of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina ku, Kyoto 607-8412, Japan
| |
Collapse
|
11
|
Xu Z, Deng W, Li N, Lv T, Wang L, Chen X, Li M, Zhang W, Liu B, Peng X. Harnessing a simple ratiometric fluorescent probe for albumin recognition and beyond. Chem Commun (Camb) 2024; 60:6304-6307. [PMID: 38818574 DOI: 10.1039/d4cc01813c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
A commercially available naphthalene fluorophore serves as a ratiometric indicator for albumin, showcasing its applications in albumin-based supramolecular recognition.
Collapse
Affiliation(s)
- Zhongyong Xu
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Weihua Deng
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Na Li
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Taoyuze Lv
- School of Physics, The University of Sydney, NSW 2006, Australia
| | - Lei Wang
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Xiaoqiang Chen
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Mingle Li
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Wenxing Zhang
- Advanced Materials and Devices Laboratory, School of Materials Science and Engineering, Hanshan Normal University, Guangdong, 521041, China.
| | - Bin Liu
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Xiaojun Peng
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| |
Collapse
|
12
|
Zhao Y, Guo Y, Xu Z, Lv T, Wang L, Li M, Chen X, Liu B, Peng X. Ratiometric determination of etomidate based on an albumin-based indicator displacement assay (IDA). Chem Commun (Camb) 2024; 60:4691-4694. [PMID: 38592772 DOI: 10.1039/d4cc01154f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The first fluorescent sensor based on the indicator displacement assay (IDA) for on-site determination of etomidate.
Collapse
Affiliation(s)
- Yutian Zhao
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Yanan Guo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, P. R. China
| | - Zhongyong Xu
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Taoyuze Lv
- School of Physics, The University of Sydney, NSW 2006, Australia
| | - Lei Wang
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Mingle Li
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Xiaoqiang Chen
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Bin Liu
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Xiaojun Peng
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| |
Collapse
|