1
|
Marsh D. Rate constants for saturation-recovery EPR and ELDOR of 14N-Spin labels. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 350:107414. [PMID: 36913743 DOI: 10.1016/j.jmr.2023.107414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 05/10/2023]
Abstract
Saturation-recovery (SR)-EPR can determine electron spin-lattice relaxation rates in liquids over a wide range of effective viscosity, making it especially useful for biophysical and biomedical applications. Here, I develop exact solutions for the SR-EPR and SR-ELDOR rate constants of 14N-nitroxyl spin labels as a function of rotational correlation time and spectrometer operating frequency. Explicit mechanisms for electron spin-lattice relaxation are: rotational modulation of the N-hyperfine and electron-Zeeman anisotropies (specifically including cross terms), spin-rotation interaction, and residual frequency-independent vibrational contributions from Raman processes and local modes. Cross relaxation from mutual electron and nuclear spin flips, and direct nitrogen nuclear spin-lattice relaxation, also must be included. Both the latter are further contributions from rotational modulation of the electron-nuclear dipolar interaction (END). All the conventional liquid-state mechanisms are defined fully by the spin-Hamiltonian parameters; only the vibrational contributions contain fitting parameters. This analysis gives a firm basis for interpreting SR (and inversion recovery) results in terms of additional, less standard mechanisms.
Collapse
Affiliation(s)
- Derek Marsh
- Max-Planck Institute for Multidisciplinary Sciences, 37070 Göttingen, Germany(1).
| |
Collapse
|
2
|
Relationship between Translational and Rotational Dynamics of Alkyltriethylammonium-Based Ionic Liquids. Int J Mol Sci 2022; 23:ijms23031688. [PMID: 35163609 PMCID: PMC8836145 DOI: 10.3390/ijms23031688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
1H spin-lattice relaxation experiments have been performed for a series of ionic liquids including bis(trifluoromethanesulfonyl)imide anion and cations of a varying alkyl chain length: triethylhexylammonium, triethyloctylammonium, decyltriethylammonium, dodecyltriethylammonium, triethyltetradecylammonium, and hexadecyltriethylammonium. The relaxation studies were carried out in abroad frequency range covering three orders of magnitude, from 10 kHz to 10 MHz, versus temperature. On the basis of a thorough, quantitative analysis of this reach data set, parameters characterizing the relative, cation-cation, translation diffusion (relative diffusion coefficients and translational correlation times), and rotational motion of the cation (rotational correlation times) were determined. Relationships between these quantities and their dependence on the alkyl chain length were discussed in comparison to analogous properties of molecular liquids. It was shown, among other findings, that the ratio between the translational and rotational correlation times is smaller than for molecular liquids and considerably dependent on temperature. Moreover, a comparison of relative and self-diffusion coefficients indicate correlated translational dynamics of the cations.
Collapse
|
3
|
Mladenova Kattnig BY, Kattnig DR, Grampp G. High-Pressure ESR Spectroscopy: On the Rotational Motion of Spin Probes in Pressurized Ionic Liquids. J Phys Chem B 2022; 126:906-911. [PMID: 35073090 PMCID: PMC9097484 DOI: 10.1021/acs.jpcb.1c09243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We
report high-pressure (up to 50 MPa) ESR-spectroscopic investigations
on the rotational correlation times of the nitroxide radicals 2,2,6,6-tetramethylpiperidine
1-oxyl (TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL),
and 4-amino-2,2,6,6-tetramethylpiperidine 1-oxyl (ATEMPO) in the ionic
liquids 1-ethyl-3-methylimidazolium tetrafluoroborate (emimBF4), 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6), 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4), 1-methyl-3-octylimidazolium tetrafluoroborate (omimBF4), and 1-methyl-3-octylimidazolium hexafluorophosphate (omimPF6). The activation volumes (38.5–56.6 Å3) determined from pressure dependent rotational diffusion coefficients
agree well with the pressure dependent viscosities of the ionic liquids.
Experimentally, the fractional exponent of the generalized Stokes–Einstein–Debye
relation is found to be close to one.
Collapse
Affiliation(s)
| | - Daniel R. Kattnig
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, U.K
| | - Guenter Grampp
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
4
|
Ivanov MY, Prikhod’ko SA, Bakulina OD, Kiryutin AS, Adonin NY, Fedin MV. Validation of Structural Grounds for Anomalous Molecular Mobility in Ionic Liquid Glasses. Molecules 2021; 26:5828. [PMID: 34641371 PMCID: PMC8510339 DOI: 10.3390/molecules26195828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
Ionic liquid (IL) glasses have recently drawn much interest as unusual media with unique physicochemical properties. In particular, anomalous suppression of molecular mobility in imidazolium IL glasses vs. increasing temperature was evidenced by pulse Electron Paramagnetic Resonance (EPR) spectroscopy. Although such behavior has been proven to originate from dynamics of alkyl chains of IL cations, the role of electron spin relaxation induced by surrounding protons still remains unclear. In this work we synthesized two deuterated imidazolium-based ILs to reduce electron-nuclear couplings between radical probe and alkyl chains of IL, and investigated molecular mobility in these glasses. The obtained trends were found closely similar for deuterated and protonated analogs, thus excluding the relaxation-induced artifacts and reliably demonstrating structural grounds of the observed anomalies in heterogeneous IL glasses.
Collapse
Affiliation(s)
- Mikhail Yu. Ivanov
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia; (O.D.B.); (A.S.K.)
| | - Sergey A. Prikhod’ko
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Avenue 5, 630090 Novosibirsk, Russia; (S.A.P.); (N.Y.A.)
| | - Olga D. Bakulina
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia; (O.D.B.); (A.S.K.)
| | - Alexey S. Kiryutin
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia; (O.D.B.); (A.S.K.)
| | - Nicolay Yu. Adonin
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Avenue 5, 630090 Novosibirsk, Russia; (S.A.P.); (N.Y.A.)
| | - Matvey V. Fedin
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia; (O.D.B.); (A.S.K.)
| |
Collapse
|
5
|
Ivanov MY, Poryvaev AS, Polyukhov DM, Prikhod'ko SA, Adonin NY, Fedin MV. Nanoconfinement effects on structural anomalies in imidazolium ionic liquids. NANOSCALE 2020; 12:23480-23487. [PMID: 33174581 DOI: 10.1039/d0nr06961b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Imidazolium Ionic Liquids (ILs) have been found to exhibit unusual nanostructuring behavior below their glass transition temperatures (Tg), which is ascribed to rearrangements in nonpolar domains formed by segregated alkyl chains. However, the dimensions required for such highly cooperative bulk phenomena are still unknown. In this work, we for the first time, investigate the effect of nanoconfinement on structural anomalies in imidazolium ILs. For this purpose, a series of ILs were embedded into the cavities of metal-organic framework (MOF) ZIF-8 and investigated using spin probes and Electron Paramagnetic Resonance (EPR) spectroscopy. The unusual nanostructuring near Tg, previously known for bulk ILs, was also observed for such nanoconfined ILs, and the amplitude of the anomaly was found to be dependent on the structure of the IL, thus showing the effects of molecular packing inside the MOF cavity. The first observation of structural anomalies in nanoconfined ILs opens perspectives for designing smart materials exhibiting these phenomena, and engaging MOFs as platforms creates the basis for potential applications of such functionalities.
Collapse
Affiliation(s)
- Mikhail Yu Ivanov
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia.
| | | | | | | | | | | |
Collapse
|
6
|
Biller JR, Barnes R, Han S. Perspective of Overhauser dynamic nuclear polarization for the study of soft materials. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Ivanov MY, Veber SL, Prikhod’ko SA, Adonin NY, Bagryanskaya EG, Fedin MV. Probing Microenvironment in Ionic Liquids by Time-Resolved EPR of Photoexcited Triplets. J Phys Chem B 2015; 119:13440-9. [DOI: 10.1021/acs.jpcb.5b06792] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Yu. Ivanov
- International
Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - S. L. Veber
- International
Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - S. A. Prikhod’ko
- Boreskov Institute of Catalysis SB RAS, 630090 Novosibirsk, Russia
| | - N. Yu. Adonin
- Boreskov Institute of Catalysis SB RAS, 630090 Novosibirsk, Russia
| | - E. G. Bagryanskaya
- International
Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
- N. N. Vorozhtsov
Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - M. V. Fedin
- International
Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Eaton SS, Eaton GR. Multifrequency Pulsed EPR and the Characterization of Molecular Dynamics. Methods Enzymol 2015; 563:37-58. [PMID: 26478481 PMCID: PMC5380387 DOI: 10.1016/bs.mie.2015.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
In fluid solution, motion-dependent processes dominate electron spin-lattice relaxation for nitroxides and semiquinones at frequencies between 250 MHz and 34 GHz. For triarylmethyl radicals, motion-dependent processes dominate spin-lattice relaxation at frequencies below about 3 GHz. The frequency dependence of relaxation provides invaluable information about dynamic processes occurring with characteristic times on the order of the electron Zeeman frequency. Relaxation mechanisms, methods of measuring spin-lattice relaxation, and motional processes for nitroxide, semiquinone, and triarylmethyl radicals are discussed.
Collapse
Affiliation(s)
- Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA.
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| |
Collapse
|