1
|
Soleimany A, Khoee S, Dastan D, Shi Z, Yu S, Sarmento B. Two-photon photodynamic therapy based on FRET using tumor-cell targeted riboflavin conjugated graphene quantum dot. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112602. [PMID: 36442423 DOI: 10.1016/j.jphotobiol.2022.112602] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/12/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
The photodynamic therapy (PDT) is considered as a noninvasive and photo-controlled treatment for various cancers. However, its potential is not fully developed as current clinically approved photosensitizers (PSs) mainly absorb the light in the UV-visible region (less than 700 nm), where the depth of penetration is inadequate for reaching tumor cells under deeper tissue layers. Furthermore, the lack of specific accumulation capability of the conventional PSs in the tumor cells may cause serious toxicity and low treatment efficiency. To address these problems, riboflavin (Rf) conjugated and amine-functionalized nitrogen-doped graphene quantum dots (am-N-GQD) are herein proposed. Rf functions as both photosensitizer and targeting ligand by indirect excitation through intra-particle fluorescence resonance energy transfer (FRET) via two-photon (TP) excited am-N-GQD, to enhance the treatment depth, and further am-N-GQD-Rf accumulation in cancer cells using Rf transporter family (RFVTs) and Rf carrier proteins (RCPs). The one-photon (OP) and two-photon(TP)-PDT effect and cellular internalization ability of the am-N-GQD-Rf were investigated in vitro in different cancel cell lines. Besides the excellent cellular uptake as well TP-PDT capability, the superior biocompatibility of am-N-GQD-Rf in vitro makes it promising candidate in PDT.
Collapse
Affiliation(s)
- Amir Soleimany
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, Tehran, 14155-6455, Iran; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Sepideh Khoee
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, Tehran, 14155-6455, Iran.
| | - Davoud Dastan
- School of Materials Science and Engineering, Georgia Institute of Technology, 30332 Atlanta, GA, USA
| | - Zhicheng Shi
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Shengtao Yu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Bruno Sarmento
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
2
|
Poellmann MJ, Nair A, Bu J, Kim JKH, Kimple RJ, Hong S. Immunoavidity-Based Capture of Tumor Exosomes Using Poly(amidoamine) Dendrimer Surfaces. NANO LETTERS 2020; 20:5686-5692. [PMID: 32407121 DOI: 10.1021/acs.nanolett.0c00950] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Tumor-derived blood-circulating exosomes have potential as a biomarker to greatly improve cancer treatment. However, effective isolation of exosomes remains a tremendous technical challenge. This study presents a novel nanostructured polymer surface for highly effective capture of exosomes through strong avidity. Various surface configurations, consisting of multivalent dendrimers, PEG, and tumor-targeting antibodies, were tested using exosomes isolated from tumor cell lines. We found that a dual layer dendrimer configuration exhibited the highest efficiency in capturing cultured exosomes spiked into human serum. Importantly, the optimized surface captured a > 4-fold greater amount of tumor exosomes from head and neck cancer patient plasma samples than that from healthy donors. Nanomechanical analysis using atomic force microscopy also revealed that the enhancement was attributed to multivalent binding (avidity) and augmented short-range adhesion mediated by dendrimers. Our results support that the dendrimer surface detects tumor exosomes at high sensitivity and specificity, demonstrating its potential as a new cancer liquid biopsy platform.
Collapse
Affiliation(s)
- Michael J Poellmann
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Ashita Nair
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jiyoon Bu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jack K H Kim
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Randall J Kimple
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul, Korea 03722
| |
Collapse
|
3
|
Bu J, Nair A, Iida M, Jeong WJ, Poellmann MJ, Mudd K, Kubiatowicz LJ, Liu EW, Wheeler DL, Hong S. An Avidity-Based PD-L1 Antagonist Using Nanoparticle-Antibody Conjugates for Enhanced Immunotherapy. NANO LETTERS 2020; 20:4901-4909. [PMID: 32510959 PMCID: PMC7737517 DOI: 10.1021/acs.nanolett.0c00953] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Upregulation of programmed death ligand 1 (PD-L1) allows cancer cells to evade antitumor immunity. Despite tremendous efforts in developing PD-1/PD-L1 immune checkpoint inhibitors (ICIs), clinical trials using such ICIs have shown inconsistent benefits. Here, we hypothesized that the ICI efficacy would be dictated by the binding strength of the inhibitor to the target proteins. To assess this, hyperbranched, multivalent poly(amidoamine) dendrimers were employed to prepare dendrimer-ICI conjugates (G7-aPD-L1). Binding kinetics measurements using SPR, BLI, and AFM revealed that G7-aPD-L1 exhibits significantly enhanced binding strength to PD-L1 proteins, compared to free aPD-L1. The binding avidity of G7-aPD-L1 was translated into in vitro efficiency and in vivo selectivity, as the conjugates improved the PD-L1 blockade effect and enhanced accumulation in tumor sites. Our results demonstrate that the dendrimer-mediated multivalent interaction substantially increases the binding avidity of the ICIs and thereby improves the antagonist effect, providing a novel platform for cancer immunotherapy.
Collapse
Affiliation(s)
- Jiyoon Bu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ashita Nair
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mari Iida
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Woo-jin Jeong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michael J. Poellmann
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kara Mudd
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Luke J. Kubiatowicz
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elizabeth W. Liu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Deric L. Wheeler
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul 03722, Republic of Korea
- Address all correspondence to: Prof. Seungpyo Hong, Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin – Madison, 7121 Rennebohm Hall 777 Highland Avenue, Madison, WI 53705, USA, / phone: (608) 890-0699
| |
Collapse
|
4
|
Cuellar-Camacho JL, Bhatia S, Reiter-Scherer V, Lauster D, Liese S, Rabe JP, Herrmann A, Haag R. Quantification of Multivalent Interactions between Sialic Acid and Influenza A Virus Spike Proteins by Single-Molecule Force Spectroscopy. J Am Chem Soc 2020; 142:12181-12192. [PMID: 32538085 DOI: 10.1021/jacs.0c02852] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multivalency is a key principle in reinforcing reversible molecular interactions through the formation of multiple bonds. The influenza A virus deploys this strategy to bind strongly to cell surface receptors. We performed single-molecule force spectroscopy (SMFS) to investigate the rupture force required to break individual and multiple bonds formed between synthetic sialic acid (SA) receptors and the two principal spike proteins of the influenza A virus (H3N2): hemagglutinin (H3) and neuraminidase (N2). Kinetic parameters such as the rupture length (χβ) and dissociation rate (koff) are extracted using the model by Friddle, De Yoreo, and Noy. We found that a monovalent SA receptor binds to N2 with a significantly higher bond lifetime (270 ms) compared to that for H3 (36 ms). By extending the single-bond rupture analysis to a multibond system of n protein-receptor pairs, we provide an unprecedented quantification of the mechanistic features of multivalency between H3 and N2 with SA receptors and show that the stability of the multivalent connection increases with the number of bonds from tens to hundreds of milliseconds. Association rates (kon) are also provided, and an estimation of the dissociation constants (KD) between the SA receptors to both proteins indicate a 17-fold higher binding affinity for the SA-N2 bond with respect to that of SA-H3. An optimal designed multivalent SA receptor showed a higher binding stability to the H3 protein of the influenza A virus than to the monovalent SA receptor. Our study emphasizes the influence of the scaffold on the presentation of receptors during multivalent binding.
Collapse
Affiliation(s)
- Jose Luis Cuellar-Camacho
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Sumati Bhatia
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Valentin Reiter-Scherer
- Department of Physics & IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Daniel Lauster
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.,Institute for Biology & IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - Susanne Liese
- Department of Mathematics, University of Oslo, Moltke Moes vei 35, 1053 Oslo, Norway
| | - Jürgen P Rabe
- Department of Physics & IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Andreas Herrmann
- Institute for Biology & IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| |
Collapse
|
5
|
Darguzyte M, Drude N, Lammers T, Kiessling F. Riboflavin-Targeted Drug Delivery. Cancers (Basel) 2020; 12:cancers12020295. [PMID: 32012715 PMCID: PMC7072493 DOI: 10.3390/cancers12020295] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/14/2020] [Accepted: 01/25/2020] [Indexed: 12/30/2022] Open
Abstract
Active targeting can improve the retention of drugs and drug delivery systems in tumors, thereby enhancing their therapeutic efficacy. In this context, vitamin receptors that are overexpressed in many cancers are promising targets. In the last decade, attention and research were mainly centered on vitamin B9 (folate) targeting; however, the focus is slowly shifting towards vitamin B2 (riboflavin). Interestingly, while the riboflavin carrier protein was discovered in the 1960s, the three riboflavin transporters (RFVT 1-3) were only identified recently. It has been shown that riboflavin transporters and the riboflavin carrier protein are overexpressed in many tumor types, tumor stem cells, and the tumor neovasculature. Furthermore, a clinical study has demonstrated that tumor cells exhibit increased riboflavin metabolism as compared to normal cells. Moreover, riboflavin and its derivatives have been conjugated to ultrasmall iron oxide nanoparticles, polyethylene glycol polymers, dendrimers, and liposomes. These conjugates have shown a high affinity towards tumors in preclinical studies. This review article summarizes knowledge on RFVT expression in healthy and pathological tissues, discusses riboflavin internalization pathways, and provides an overview of RF-targeted diagnostics and therapeutics.
Collapse
Affiliation(s)
- Milita Darguzyte
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany; (M.D.); (N.D.); (T.L.)
| | - Natascha Drude
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany; (M.D.); (N.D.); (T.L.)
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany; (M.D.); (N.D.); (T.L.)
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany; (M.D.); (N.D.); (T.L.)
- Fraunhofer MEVIS, Institute for Medical Image Computing, Forckenbeckstrasse 55, 52074 Aachen, Germany
- Correspondence:
| |
Collapse
|
6
|
Dalal C, Jana NR. Riboflavin-Terminated, Multivalent Quantum Dot as Fluorescent Cell Imaging Probe. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11380-11388. [PMID: 31389703 DOI: 10.1021/acs.langmuir.9b01168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Bioconjugated nanoparticles are commonly used for targeting cellular/subcellular components, and labeling performance is known to depend on multivalency, i.e., the number of attached biomolecule per particle. However, these multivalency effects are largely unexplored. Here, we show that multivalency of nanoparticle-bound riboflavin controls the cellular interaction, cellular entry/exit mechanism, and subcellular trafficking property. We have synthesized riboflavin-functionalized quantum dot (QD) of 15-25 nm hydrodynamic size with average riboflavin multivalencies of 15, 30, and 70 [designated as QD(RF)15, QD(RF)30, and QD(RF)70, respectively] and investigated their uptake mechanism in riboflavin receptor overexpressed KB cells. We found that increased multivalency from 15 to 70 increases the cellular interaction with QD, shifts the cell uptake mechanism from caveolae-clathrin to exclusive clathrin-mediated endocytosis, and enhances lysosomal trafficking. This work demonstrates the importance of multivalency of bioconjugated molecule at the nanoparticle surface toward biolabeling performance and should be optimized for best performance of designed nanobioconjugate.
Collapse
Affiliation(s)
- Chumki Dalal
- School of Materials Science , Indian Association for the Cultivation of Science , Kolkata 700032 , India
| | - Nikhil R Jana
- School of Materials Science , Indian Association for the Cultivation of Science , Kolkata 700032 , India
| |
Collapse
|
7
|
Beaussart A, Beloin C, Ghigo JM, Chapot-Chartier MP, Kulakauskas S, Duval JFL. Probing the influence of cell surface polysaccharides on nanodendrimer binding to Gram-negative and Gram-positive bacteria using single-nanoparticle force spectroscopy. NANOSCALE 2018; 10:12743-12753. [PMID: 29946619 DOI: 10.1039/c8nr01766b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The safe use and design of nanoparticles (NPs) ask for a comprehensive interpretation of their potentially adverse effects on (micro)organisms. In this respect, the prior assessment of the interactions experienced by NPs in the vicinity of - and in contact with - complex biological surfaces is mandatory. It requires the development of suitable techniques for deciphering the processes that govern nano-bio interactions when a single organism is exposed to an extremely low dose of NPs. Here, we used atomic force spectroscopy (AFM)-based force measurements to investigate at the nanoscale the interactions between carboxylate-terminated polyamidoamine (PAMAM) nanodendrimers (radius ca. 4.5 nm) and two bacteria with very distinct surface properties, Escherichia coli and Lactococcus lactis. The zwitterionic nanodendrimers exhibit a negative peripheral surface charge and/or a positive intraparticulate core depending on the solution pH and salt concentration. Following an original strategy according to which a single dendrimer NP is grafted at the very apex of the AFM tip, the density and localization of NP binding sites are probed at the surface of E. coli and L. lactis mutants expressing different cell surface structures (presence/absence of the O-antigen of the lipopolysaccharides (LPS) or of a polysaccharide pellicle). In line with electrokinetic analysis, AFM force measurements evidence that adhesion of NPs onto pellicle-decorated L. lactis is governed by their underlying electrostatic interactions as controlled by the pH-dependent charge of the peripheral and internal NP components, and the negatively-charged cell surface. In contrast, the presence of the O-antigen on E. coli systematically suppresses the adhesion of nanodendrimers onto cells, may the apparent NP surface charge be determined by the peripheral carboxylate groups or by the internal amine functions. Altogether, this work highlights the differentiated roles played by surface polysaccharides in mediating NP attachment to Gram-positive and Gram-negative bacteria. It further demonstrates that the assessment of NP bioadhesion features requires a critical analysis of the electrostatic contributions stemming from the various structures composing the stratified cell envelope, and those originating from the bulk and surface NP components. The joint use of electrokinetics and AFM provides a valuable option for rapidly addressing the binding propensity of NPs to microorganisms, as urgently needed in NP risk assessments.
Collapse
|
8
|
Peterson E, Joseph C, Peterson H, Bouwman R, Tang S, Cannon J, Sinniah K, Choi SK. Measuring the Adhesion Forces for the Multivalent Binding of Vancomycin-Conjugated Dendrimer to Bacterial Cell-Wall Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7135-7146. [PMID: 29792710 DOI: 10.1021/acs.langmuir.8b01137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Multivalent ligand-receptor interaction provides the fundamental basis for the hypothetical notion that high binding avidity relates to the strong force of adhesion. Despite its increasing importance in the design of targeted nanoconjugates, an understanding of the physical forces underlying the multivalent interaction remains a subject of urgent investigation. In this study, we designed three vancomycin (Van)-conjugated dendrimers G5(Van) n ( n = mean valency = 0, 1, 4) for bacterial targeting with generation 5 (G5) poly(amidoamine) dendrimer as a multivalent scaffold and evaluated both their binding avidity and physical force of adhesion to a bacterial model surface by employing surface plasmon resonance (SPR) spectroscopy and atomic force microscopy. The SPR experiment for these conjugates was performed in a biosensor chip surface immobilized with a bacterial cell-wall peptide Lys-d-Ala-d-Ala. Of these, G5(Van)4 bound most tightly with a KD of 0.34 nM, which represents an increase in avidity by 2 or 3 orders of magnitude relative to a monovalent conjugate G5(Van)1 or free vancomycin, respectively. By single-molecule force spectroscopy, we measured the adhesion force between G5(Van) n and the same cell-wall peptide immobilized on the surface. The distribution of adhesion forces increased in proportion to vancomycin valency with the mean force of 134 pN at n = 4 greater than 96 pN at n = 1 at a loading rate of 5200 pN/s. In summary, our results are strongly supportive of the positive correlation between the avidity and adhesion force in the multivalent interaction of vancomycin nanoconjugates.
Collapse
Affiliation(s)
- Elizabeth Peterson
- Department of Chemistry & Biochemistry , Calvin College , Grand Rapids , Michigan 49546 , United States
| | | | - Hannah Peterson
- Department of Chemistry & Biochemistry , Calvin College , Grand Rapids , Michigan 49546 , United States
| | - Rachael Bouwman
- Department of Chemistry & Biochemistry , Calvin College , Grand Rapids , Michigan 49546 , United States
| | | | | | - Kumar Sinniah
- Department of Chemistry & Biochemistry , Calvin College , Grand Rapids , Michigan 49546 , United States
| | | |
Collapse
|
9
|
Yamazaki S, Diaz MA, Carlino TM, Gotluru C, Mazza MMA, Scott AM. Ultrafast Spectroscopic Dynamics of Quinacrine-Riboflavin Binding Protein Interactions. J Phys Chem B 2017; 121:8291-8299. [PMID: 28762739 DOI: 10.1021/acs.jpcb.7b05304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Redox active cofactors play a dynamic role inside protein binding active sites because the amino acids responsible for binding participate in electron transfer (ET) reactions. Here, we use femtosecond transient absorption (FsTA) spectroscopy to examine the ultrafast ET between quinacrine (Qc), an antimalarial drug with potential anticancer activity, and riboflavin binding protein (RfBP) with a known Kd = 264 nM. Steady-state absorption reveals a ∼ 10 nm red-shift in the ground state when QcH32+ is titrated with RfBP, and a Stern-Volmer analysis shows ∼84% quenching and a blue-shift of the QcH32+ photoluminescence to form a 1:1 binding ratio of the QcH32+-RfBP complex. Upon selective photoexcitation of QcH32+ in the QcH32+-RfBP complex, we observe charge separation in 7 ps to form 1[QcH3_red•+-RfBP•+], which persists for 138 ps. The FsTA spectra show the spectroscopic identification of QcH3_red•+, determined from spectroelectrochemical measurements in DMSO. We correlate our results to literature and report lifetimes that are 10-20× slower than the natural riboflavin, Rf-RfBP, complex and are oxygen independent. Driving force (ΔG) calculations, corrected for estimated dielectric constants for protein hydrophobic pockets, and Marcus theory depict a favorable one-electron ET process between QcH32+ and nearby redox active tyrosine (Tyr) or tryptophan (Trp) residues.
Collapse
Affiliation(s)
- Shiori Yamazaki
- University of Miami , Department of Chemistry, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Matthew A Diaz
- University of Miami , Department of Chemistry, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Thomas M Carlino
- University of Miami , Department of Chemistry, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Chitra Gotluru
- University of Miami , Department of Chemistry, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Mercedes M A Mazza
- University of Miami , Department of Chemistry, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Amy M Scott
- University of Miami , Department of Chemistry, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
10
|
Leroueil PR, DiMaggio S, Leistra AN, Blanchette CD, Orme C, Sinniah K, Orr BG, Banaszak Holl MM. Characterization of Folic Acid and Poly(amidoamine) Dendrimer Interactions with Folate Binding Protein: A Force-Pulling Study. J Phys Chem B 2015; 119:11506-12. [PMID: 26256755 DOI: 10.1021/acs.jpcb.5b05391] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atomic force microscopy force-pulling experiments have been used to measure the binding forces between folic acid (FA) conjugated poly(amidoamine) (PAMAM) dendrimers and folate binding protein (FBP). The generation 5 (G5) PAMAM conjugates contained an average of 2.7, 4.7, and 7.2 FA per dendrimer. The most probable rupture force was measured to be 83, 201, and 189 pN for G5-FA2.7, G5-FA4.7, and G5-FA7.2, respectively. Folic acid blocking experiments for G5-FA7.2 reduced the frequency of successful binding events and increased the magnitude of the average rupture force to 274 pN. The force data are interpreted as arising from a network of van der Waals and electrostatic interactions that form between FBP and G5 PAMAM dendrimer, resulting in a binding strength far greater than that expected for an interaction between FA and FBP alone.
Collapse
Affiliation(s)
| | - Stassi DiMaggio
- Department of Chemistry, Xavier University , New Orleans, Louisiana 70125, United States
| | - Abigail N Leistra
- Department of Chemistry & Biochemistry, Calvin College , Grand Rapids, Michigan 49546, United States
| | - Craig D Blanchette
- Physical and Life Sciences Division, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | - Christine Orme
- Physical and Life Sciences Division, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | - Kumar Sinniah
- Department of Chemistry & Biochemistry, Calvin College , Grand Rapids, Michigan 49546, United States
| | | | | |
Collapse
|
11
|
Hu X, Dinu CZ. Analysis of affinities between specific biological ligands using atomic force microscopy. Analyst 2015; 140:8118-26. [PMID: 26525901 DOI: 10.1039/c5an01748c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We used atomic force microscopy to rank the energetics of biomolecular recognition events of protein–ligand complexes.
Collapse
Affiliation(s)
- Xiao Hu
- West Virginia University
- Department of Chemical Engineering
- Morgantown
- USA
| | | |
Collapse
|