1
|
Guo WX, Hu LF, Feng YH, Chen BZ, Guo XD. Advances in self-assembling of pH-sensitive polymers: A mini review on dissipative particle dynamics. Colloids Surf B Biointerfaces 2021; 210:112202. [PMID: 34840030 DOI: 10.1016/j.colsurfb.2021.112202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
Dissipative Particle Dynamics (DPD) is a mesoscopic simulation program used to simulate the behavior of complex fluids. This work systematically reviews the use of DPD to simulate the self-assembly process of pH-sensitive drug-loaded nanoparticles. pH-sensitive drug-loaded nanoparticles have the characteristics of good targeting and slow release in the body, which is an ideal method for treating cancer and other diseases. As an excellent simulation method, DPD can help people explore the loading and release laws of drugs with complex molecular structures and has extensive applications in other medical fields. This article reviews the self-assembly process of pH-sensitive polymers under neutral conditions and explores the factors that affect the self-assembly structure. It points out that different hydrophilic-hydrophobic ratios, molecular structures, and component distributions will affect the morphology, stability and drug carrying capacity of micelles. This article also introduces the release mechanism of the drug in detail and introduces the factors that affect the release. This article can help relevant researchers to follow the latest advances in the DPD simulation and pH-sensitive drug nano-carrier and insight people to investigate the further application of DPD simulation in biomedical science.
Collapse
Affiliation(s)
- Wei Xin Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Liu Fu Hu
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yun Hao Feng
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Bo Zhi Chen
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Xin Dong Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
2
|
Sheng Y, Chen C, Xia Y, Gao C, Zhang X. Tunable morphologies from solution self-assembly of diblock copolymers under nanoscale confinement. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Mushnoori S, Schmidt K, Nanda V, Dutt M. Designing phenylalanine-based hybrid biological materials: controlling morphology via molecular composition. Org Biomol Chem 2018; 16:2499-2507. [PMID: 29565077 DOI: 10.1039/c8ob00130h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Harnessing the self-assembly of peptide sequences has demonstrated great promise in the domain of creating high precision shape-tunable biomaterials. The unique properties of peptides allow for a building block approach to material design. In this study, self-assembly of mixed systems encompassing two peptide sequences with identical hydrophobic regions and distinct polar segments is investigated. The two peptide sequences are diphenylalanine and phenylalanine-asparagine-phenylalanine. The study examines the impact of molecular composition (namely, the total peptide concentration and the relative tripeptide concentration) on the morphology of the self-assembled hybrid biological material. We report a rich polymorphism in the assemblies of these peptides and explain the relationship between the peptide sequence, concentration and the morphology of the supramolecular assembly.
Collapse
Affiliation(s)
- Srinivas Mushnoori
- Department of Chemical and Biochemical Engineering, Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA.
| | - Kassandra Schmidt
- Department of Biomedical Engineering, Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA and Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA
| | - Meenakshi Dutt
- Department of Chemical and Biochemical Engineering, Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA.
| |
Collapse
|
4
|
Chu X, Yu X, Greenstein J, Aydin F, Uppaladadium G, Dutt M. Flow-Induced Shape Reconfiguration, Phase Separation, and Rupture of Bio-Inspired Vesicles. ACS NANO 2017; 11:6661-6671. [PMID: 28582613 DOI: 10.1021/acsnano.7b00753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The structural integrity of red blood cells and drug delivery carriers through blood vessels is dependent upon their ability to adapt their shape during their transportation. Our goal is to examine the role of the composition of bio-inspired multicomponent and hairy vesicles on their shape during their transport through in a channel. Through the dissipative particle dynamics simulation technique, we apply Poiseuille flow in a cylindrical channel. We investigate the effect of flow conditions and concentration of key molecular components on the shape, phase separation, and structural integrity of the bio-inspired multicomponent and hairy vesicles. Our results show the Reynolds number and molecular composition of the vesicles impact their flow-induced deformation, phase separation on the outer monolayer due to the Marangoni effect, and rupture. The findings from this study could be used to enhance the design of drug delivery and tissue engineering systems.
Collapse
Affiliation(s)
- Xiaolei Chu
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Xiang Yu
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Joseph Greenstein
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Fikret Aydin
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Geetartha Uppaladadium
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Meenakshi Dutt
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| |
Collapse
|
5
|
Liu YT, Li YR, Wang X. Spontaneous onion shape vesicle formation and fusion of comb-like block copolymers studied by dissipative particle dynamics. RSC Adv 2017. [DOI: 10.1039/c6ra26127b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The formation of an onion shape vesicle.
Collapse
Affiliation(s)
- Ying-Tao Liu
- School of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan
- China
| | - Yan-Rong Li
- School of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan
- China
| | - Xin Wang
- School of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan
- China
| |
Collapse
|
6
|
Bunker A, Magarkar A, Viitala T. Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2334-2352. [DOI: 10.1016/j.bbamem.2016.02.025] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/22/2023]
|
7
|
Teng CY, Sheng YJ, Tsao HK. Boundary-induced segregation in nanoscale thin films of athermal polymer blends. SOFT MATTER 2016; 12:4603-4610. [PMID: 27108653 DOI: 10.1039/c6sm00559d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The surface segregation of binary athermal polymer blends confined in a nanoscale thin film was investigated by dissipative particle dynamics. The polymer blend included linear/linear, star/linear, bottlebrush/linear, and rod-like/linear polymer systems. The segregation was driven by purely entropic effects and two different mechanisms were found. For the linear/linear and star/linear polymer blends, the smaller sized polymers were preferentially segregated to the boundary because their excluded volumes were smaller than those of the matrix polymers. For the bottlebrush/linear and rod-like/linear polymer blends, the polymers with a larger persistent length were preferentially segregated to the boundary because they favored staying in the depletion zone by alignment with the wall. Our simulation outcome was consistent with experimental results and also agreed with theoretical predictions - that is, a surface excess dictated by the chain ends for the branch/linear system. These consequences are of great importance in controlling the homogeneity and surface properties of polymer blend thin films.
Collapse
Affiliation(s)
- Chih-Yu Teng
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Yu-Jane Sheng
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Heng-Kwong Tsao
- Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan. and Department of Physics, National Central University, Jhongli 320, Taiwan
| |
Collapse
|
8
|
Harnessing steric hindrance to control interfacial adsorption of patchy nanoparticles onto hairy vesicles. Colloids Surf B Biointerfaces 2016; 141:458-466. [DOI: 10.1016/j.colsurfb.2016.01.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/25/2016] [Accepted: 01/31/2016] [Indexed: 11/22/2022]
|