1
|
Karafoulidi-Retsou C, Katz S, Frielingsdorf S, Lenz O, Zebger I, Caserta G. A strong H-bond between a cysteine and the catalytic center of a [NiFe]-hydrogenase. Chem Commun (Camb) 2025; 61:5778-5781. [PMID: 40125578 DOI: 10.1039/d5cc00646e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Infrared spectroscopy at cryogenic temperatures was used to monitor protonation changes on an H+-accepting, nickel-coordinating active site cysteine of the H2/H+-cycling membrane-bound [NiFe]-hydrogenase from Cupriavidus necator. Surprisingly, we identified another cysteine in the outer coordination sphere forming a strong H-bond with a cysteine thiolate coordinating both nickel and iron of the catalytic center.
Collapse
Affiliation(s)
- Chara Karafoulidi-Retsou
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Sagie Katz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Stefan Frielingsdorf
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Oliver Lenz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Ingo Zebger
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Giorgio Caserta
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| |
Collapse
|
2
|
Karafoulidi-Retsou C, Lorent C, Katz S, Rippers Y, Matsuura H, Higuchi Y, Zebger I, Horch M. Light-Induced Electron Transfer in a [NiFe] Hydrogenase Opens a Photochemical Shortcut for Catalytic Dihydrogen Cleavage. Angew Chem Int Ed Engl 2024; 63:e202409065. [PMID: 39054251 DOI: 10.1002/anie.202409065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
[NiFe] hydrogenases catalyze the reversible cleavage of molecular hydrogen into protons and electrons. Here, we have studied the impact of temperature and illumination on an oxygen-tolerant and thermostable [NiFe] hydrogenase by IR and EPR spectroscopy. Equilibrium mixtures of two catalytic [NiFe] states, Nia-C and Nia-SR'', were found to drastically change with temperature, indicating a thermal exchange of electrons between the [NiFe] active site and iron-sulfur clusters of the enzyme. In addition, IR and EPR experiments performed under illumination revealed an unusual photochemical response of the enzyme. Nia-SR'', a fully reduced hydride intermediate of the catalytic cycle, was found to be reversibly photoconverted into another catalytic state, Nia-L. In contrast to the well-known photolysis of the more oxidized hydride intermediate Nia-C, photoconversion of Nia-SR'' into Nia-L is an active-site redox reaction that involves light-driven electron transfer towards the enzyme's iron-sulfur clusters. Omitting the ground-state intermediate Nia-C, this direct interconversion of these two states represents a potential photochemical shortcut of the catalytic cycle that integrates multiple redox sites of the enzyme. In total, our findings reveal the non-local redistribution of electrons via thermal and photochemical reaction channels and the potential of accelerating or controlling [NiFe] hydrogenases by light.
Collapse
Affiliation(s)
- Chara Karafoulidi-Retsou
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Christian Lorent
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Sagie Katz
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Yvonne Rippers
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195, Berlin, Germany
| | - Hiroaki Matsuura
- Life Science Research Infrastructure Group, RIKEN/SPring-8 Center, 1.1.1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Yoshiki Higuchi
- Graduate School of Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
| | - Ingo Zebger
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Marius Horch
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195, Berlin, Germany
| |
Collapse
|
3
|
Sirohiwal A, Gamiz-Hernandez AP, Kaila VRI. Mechanistic Principles of Hydrogen Evolution in the Membrane-Bound Hydrogenase. J Am Chem Soc 2024; 146:18019-18031. [PMID: 38888987 PMCID: PMC11228991 DOI: 10.1021/jacs.4c04476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
The membrane-bound hydrogenase (Mbh) from Pyrococcus furiosus is an archaeal member of the Complex I superfamily. It catalyzes the reduction of protons to H2 gas powered by a [NiFe] active site and transduces the free energy into proton pumping and Na+/H+ exchange across the membrane. Despite recent structural advances, the mechanistic principles of H2 catalysis and ion transport in Mbh remain elusive. Here, we probe how the redox chemistry drives the reduction of the proton to H2 and how the catalysis couples to conformational dynamics in the membrane domain of Mbh. By combining large-scale quantum chemical density functional theory (DFT) and correlated ab initio wave function methods with atomistic molecular dynamics simulations, we show that the proton transfer reactions required for the catalysis are gated by electric field effects that direct the protons by water-mediated reactions from Glu21L toward the [NiFe] site, or alternatively along the nearby His75L pathway that also becomes energetically feasible in certain reaction steps. These local proton-coupled electron transfer (PCET) reactions induce conformational changes around the active site that provide a key coupling element via conserved loop structures to the ion transport activity. We find that H2 forms in a heterolytic proton reduction step, with spin crossovers tuning the energetics along key reaction steps. On a general level, our work showcases the role of electric fields in enzyme catalysis and how these effects are employed by the [NiFe] active site of Mbh to drive PCET reactions and ion transport.
Collapse
Affiliation(s)
- Abhishek Sirohiwal
- Department of Biochemistry
and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Ana P. Gamiz-Hernandez
- Department of Biochemistry
and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Ville R. I. Kaila
- Department of Biochemistry
and Biophysics, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
4
|
Kharchenko AA, Fedotova YA, Zur IA, Brinkevich DI, Brinkevich SD, Grinyuk EV, Prosolovich VS, Movchan SA, Remnev GE, Linnik SA, Lastovskii SB. Processes Induced in DLC/Polyimide Structures by Irradiation with 60Co γ-Rays. HIGH ENERGY CHEMISTRY 2022. [DOI: 10.1134/s0018143922050058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Understanding 2D-IR Spectra of Hydrogenases: A Descriptive and Predictive Computational Study. Catalysts 2022. [DOI: 10.3390/catal12090988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
[NiFe] hydrogenases are metalloenzymes that catalyze the reversible cleavage of dihydrogen (), a clean future fuel. Understanding the mechanism of these biocatalysts requires spectroscopic techniques that yield insights into the structure and dynamics of the [NiFe] active site. Due to the presence of CO and ligands at this cofactor, infrared (IR) spectroscopy represents an ideal technique for studying these aspects, but molecular information from linear IR absorption experiments is limited. More detailed insights can be obtained from ultrafast nonlinear IR techniques like IRpump−IRprobe and two-dimensional (2D-)IR spectroscopy. However, fully exploiting these advanced techniques requires an in-depth understanding of experimental observables and the encoded molecular information. To address this challenge, we present a descriptive and predictive computational approach for the simulation and analysis of static 2D-IR spectra of [NiFe] hydrogenases and similar organometallic systems. Accurate reproduction of experimental spectra from a first-coordination-sphere model suggests a decisive role of the [NiFe] core in shaping the enzymatic potential energy surface. We also reveal spectrally encoded molecular information that is not accessible by experiments, thereby helping to understand the catalytic role of the diatomic ligands, structural differences between [NiFe] intermediates, and possible energy transfer mechanisms. Our studies demonstrate the feasibility and benefits of computational spectroscopy in the 2D-IR investigation of hydrogenases, thereby further strengthening the potential of this nonlinear IR technique as a powerful research tool for the investigation of complex bioinorganic molecules.
Collapse
|
6
|
Stripp ST, Duffus BR, Fourmond V, Léger C, Leimkühler S, Hirota S, Hu Y, Jasniewski A, Ogata H, Ribbe MW. Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Chem Rev 2022; 122:11900-11973. [PMID: 35849738 PMCID: PMC9549741 DOI: 10.1021/acs.chemrev.1c00914] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gases like H2, N2, CO2, and CO are increasingly recognized as critical feedstock in "green" energy conversion and as sources of nitrogen and carbon for the agricultural and chemical sectors. However, the industrial transformation of N2, CO2, and CO and the production of H2 require significant energy input, which renders processes like steam reforming and the Haber-Bosch reaction economically and environmentally unviable. Nature, on the other hand, performs similar tasks efficiently at ambient temperature and pressure, exploiting gas-processing metalloenzymes (GPMs) that bind low-valent metal cofactors based on iron, nickel, molybdenum, tungsten, and sulfur. Such systems are studied to understand the biocatalytic principles of gas conversion including N2 fixation by nitrogenase and H2 production by hydrogenase as well as CO2 and CO conversion by formate dehydrogenase, carbon monoxide dehydrogenase, and nitrogenase. In this review, we emphasize the importance of the cofactor/protein interface, discussing how second and outer coordination sphere effects determine, modulate, and optimize the catalytic activity of GPMs. These may comprise ionic interactions in the second coordination sphere that shape the electron density distribution across the cofactor, hydrogen bonding changes, and allosteric effects. In the outer coordination sphere, proton transfer and electron transfer are discussed, alongside the role of hydrophobic substrate channels and protein structural changes. Combining the information gained from structural biology, enzyme kinetics, and various spectroscopic techniques, we aim toward a comprehensive understanding of catalysis beyond the first coordination sphere.
Collapse
Affiliation(s)
- Sven T Stripp
- Freie Universität Berlin, Experimental Molecular Biophysics, Berlin 14195, Germany
| | | | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Silke Leimkühler
- University of Potsdam, Molecular Enzymology, Potsdam 14476, Germany
| | - Shun Hirota
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
| | - Yilin Hu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Andrew Jasniewski
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Hideaki Ogata
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
- Hokkaido University, Institute of Low Temperature Science, Sapporo 060-0819, Japan
- Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Markus W Ribbe
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
7
|
Nayek A, Ahmed ME, Samanta S, Dinda S, Patra S, Dey SG, Dey A. Bioinorganic Chemistry on Electrodes: Methods to Functional Modeling. J Am Chem Soc 2022; 144:8402-8429. [PMID: 35503922 DOI: 10.1021/jacs.2c01842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One of the major goals of bioinorganic chemistry has been to mimic the function of elegant metalloenzymes. Such functional modeling has been difficult to attain in solution, in particular, for reactions that require multiple protons and multiple electrons (nH+/ne-). Using a combination of heterogeneous electrochemistry, electrode and molecule design one may control both electron transfer (ET) and proton transfer (PT) of these nH+/ne- reactions. Such control can allow functional modeling of hydrogenases (H+ + e- → 1/2 H2), cytochrome c oxidase (O2 + 4 e- + 4 H+ → 2 H2O), monooxygenases (RR'CH2 + O2 + 2 e- + 2 H+ → RR'CHOH + H2O) and dioxygenases (S + O2 → SO2; S = organic substrate) in aqueous medium and at room temperatures. In addition, these heterogeneous constructs allow probing unnatural bioinspired reactions and estimation of the inner- and outer-sphere reorganization energy of small molecules and proteins.
Collapse
Affiliation(s)
- Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Md Estak Ahmed
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Souvik Dinda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Suman Patra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| |
Collapse
|
8
|
Ash PA, Kendall-Price SET, Evans RM, Carr SB, Brasnett AR, Morra S, Rowbotham JS, Hidalgo R, Healy AJ, Cinque G, Frogley MD, Armstrong FA, Vincent KA. The crystalline state as a dynamic system: IR microspectroscopy under electrochemical control for a [NiFe] hydrogenase. Chem Sci 2021; 12:12959-12970. [PMID: 34745526 PMCID: PMC8514002 DOI: 10.1039/d1sc01734a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/03/2021] [Indexed: 12/24/2022] Open
Abstract
Controlled formation of catalytically-relevant states within crystals of complex metalloenzymes represents a significant challenge to structure-function studies. Here we show how electrochemical control over single crystals of [NiFe] hydrogenase 1 (Hyd1) from Escherichia coli makes it possible to navigate through the full array of active site states previously observed in solution. Electrochemical control is combined with synchrotron infrared microspectroscopy, which enables us to measure high signal-to-noise IR spectra in situ from a small area of crystal. The output reports on active site speciation via the vibrational stretching band positions of the endogenous CO and CN- ligands at the hydrogenase active site. Variation of pH further demonstrates how equilibria between catalytically-relevant protonation states can be deliberately perturbed in the crystals, generating a map of electrochemical potential and pH conditions which lead to enrichment of specific states. Comparison of in crystallo redox titrations with measurements in solution or of electrode-immobilised Hyd1 confirms the integrity of the proton transfer and redox environment around the active site of the enzyme in crystals. Slowed proton-transfer equilibria in the hydrogenase in crystallo reveals transitions which are only usually observable by ultrafast methods in solution. This study therefore demonstrates the possibilities of electrochemical control over single metalloenzyme crystals in stabilising specific states for further study, and extends mechanistic understanding of proton transfer during the [NiFe] hydrogenase catalytic cycle.
Collapse
Affiliation(s)
- Philip A Ash
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
- School of Chemistry, University of Leicester Leicester LE1 7RH UK
- Leicester Institute of Structural and Chemical Biology, University of Leicester LE1 7RH UK
| | - Sophie E T Kendall-Price
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Rhiannon M Evans
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Stephen B Carr
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus Didcot UK
| | - Amelia R Brasnett
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Simone Morra
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Jack S Rowbotham
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Ricardo Hidalgo
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Adam J Healy
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Gianfelice Cinque
- Diamond Light Source, Harwell Science and Innovation Campus Didcot OX11 0QX UK
- Department of Engineering Sciences, University of Oxford Parks Road Oxford OX1 3PJ UK
| | - Mark D Frogley
- Diamond Light Source, Harwell Science and Innovation Campus Didcot OX11 0QX UK
| | - Fraser A Armstrong
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Kylie A Vincent
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| |
Collapse
|
9
|
The Challenge of Visualizing the Bridging Hydride at the Active Site and Proton Network of [NiFe]-Hydrogenase by Neutron Crystallography. Top Catal 2021. [DOI: 10.1007/s11244-021-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Affiliation(s)
- Sven T. Stripp
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
11
|
Abstract
Hydrogenases are metalloenzymes that catalyze proton reduction and H2 oxidation with outstanding efficiency. They are model systems for bioinorganic chemistry, including low-valent transition metals, hydride chemistry, and proton-coupled electron transfer. In this Account, we describe how photochemistry and infrared difference spectroscopy can be used to identify the dynamic hydrogen-bonding changes that facilitate proton transfer in [NiFe]- and [FeFe]-hydrogenase.[NiFe]-hydrogenase binds a heterobimetallic nickel/iron site embedded in the protein by four cysteine ligands. [FeFe]-hydrogenase carries a homobimetallic iron/iron site attached to the protein by only a single cysteine. Carbon monoxide and cyanide ligands in the active site facilitate detailed investigations of hydrogenase catalysis by infrared spectroscopy because of their strong signals and redox-dependent frequency shifts. We found that specific redox-state transitions in [NiFe]- and [FeFe]-hydrogenase can be triggered by visible light to record extremely sensitive "light-minus-dark" infrared difference spectra monitoring key amino acid residues. As these transitions are coupled to protonation changes, our data allowed investigation of dynamic hydrogen-bonding changes that go well beyond the resolution of protein crystallography.In [NiFe]-hydrogenase, photolysis of the bridging hydride ligand in the Ni-C state was followed by infrared difference spectroscopy. Our data clearly indicate the formation of a protonated cysteine residue as well as hydrogen-bonding changes involving a glutamic acid residue and a "dangling water" molecule. These findings are in excellent agreement with crystallographic analyses of [NiFe]-hydrogenase. In [FeFe]-hydrogenase, an external redox dye was used to accumulate the Hred state. Infrared difference spectra indicate hydrogen-bonding changes involving two glutamic acid residues and a conserved arginine residue. While crystallographic analyses of [FeFe]-hydrogenase in the oxidized state failed to explain the rapid proton transfer because of a breach in the succession of residues, our findings facilitated a precise molecular model of discontinued proton transfer.Comparing both systems, our data emphasize the role of the outer coordination sphere in bimetallic hydrogenases: we suggest that protonation of a nickel-ligating cysteine in [NiFe]-hydrogenase causes the notable preference toward H2 oxidation. On the contrary, proton transfer in [FeFe]-hydrogenase involves an adjacent cysteine as a relay group, promoting both H2 oxidation and proton reduction. These observations may guide the design of organometallic compounds that mimic the catalytic properties of hydrogenases.
Collapse
Affiliation(s)
- Hulin Tai
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji, Jilin 133002, China
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Sven T. Stripp
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
12
|
Tai H, Hirota S. Mechanism and Application of the Catalytic Reaction of [NiFe] Hydrogenase: Recent Developments. Chembiochem 2020; 21:1573-1581. [DOI: 10.1002/cbic.202000058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Hulin Tai
- MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional MoleculesDepartment of ChemistryYanbian University Park Road 977 Yanji 133002 Jilin China
| | - Shun Hirota
- Division of Materials ScienceGraduate School of Science and TechnologyNara Institute of Science and Technology 8916-5 Takayama Ikoma Nara 630-0192 Japan
| |
Collapse
|
13
|
Nishikawa K, Ogata H, Higuchi Y. Structural Basis of the Function of [NiFe]-hydrogenases. CHEM LETT 2020. [DOI: 10.1246/cl.190814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Koji Nishikawa
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Hideaki Ogata
- Institute of Low Temperature Science, Hokkaido University, Kita19Nishi8, Kita-ku, Sapporo, Hokkaido 060-0819, Japan
| | - Yoshiki Higuchi
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| |
Collapse
|
14
|
Ash PA, Kendall-Price SET, Vincent KA. Unifying Activity, Structure, and Spectroscopy of [NiFe] Hydrogenases: Combining Techniques To Clarify Mechanistic Understanding. Acc Chem Res 2019; 52:3120-3131. [PMID: 31675209 DOI: 10.1021/acs.accounts.9b00293] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Achieving a unified understanding of the mechanism of a multicenter redox enzyme such as [NiFe] hydrogenase is complicated by difficulties in reconciling information obtained by using different techniques and on samples in different physical forms. Measurements of the activity of the enzyme, and of factors which perturb activity, are generally carried out using biochemical assays in solution or with electrode-immobilized enzymes using protein film electrochemistry (PFE). Conversely, spectroscopy aimed at reporting on features of the metalloclusters in the enzyme, such as electron paramagnetic resonance (EPR) or X-ray absorption spectroscopy (XAS), is often conducted on frozen samples and is thus difficult to relate to catalytically relevant states as information about turnover and activity has been lost. To complicate matters further, most of our knowledge of the atomic-level structure of metalloenzymes comes from X-ray diffraction studies in the solid, crystalline state, which are again difficult to link to turnover conditions. Taking [NiFe] hydrogenases as our case study, we show here how it is possible to apply infrared (IR) spectroscopic sampling approaches to unite direct spectroscopic study with catalytic turnover. Using a method we have named protein film IR electrochemistry (PFIRE), we reveal the steady-state distribution of intermediates during catalysis and identify catalytic "bottlenecks" introduced by site-directed mutagenesis. We also show that it is possible to study dynamic transitions between active site states of enzymes in single crystals, uniting solid state and solution spectroscopic information. In all of these cases, the spectroscopic data complement and enhance interpretation of purely activity-based measurements by providing direct chemical insight that is otherwise hidden. The [NiFe] hydrogenases possess a bimetallic [NiFe] active site, coordinated by CO and CN- ligands, linked to the protein via bridging and terminal cysteine sulfur ligands, as well as an electron relay chain of iron sulfur clusters. Infrared spectroscopy is ideal for probing hydrogenases because the CO and CN- ligands are strong IR absorbers, but the suite of IR-based approaches we describe here will be equally valuable in studying substrate- or intermediate-bound states of other metalloenzymes where key mechanistic questions remain open, such as nitrogenase, formate dehydrogenase, or carbon monoxide dehydrogenase. We therefore hope that this Account will encourage future studies which unify information from different techniques across bioinorganic chemistry.
Collapse
Affiliation(s)
- Philip A. Ash
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
- School of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | | | - Kylie A. Vincent
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| |
Collapse
|
15
|
Tai H, Nishikawa K, Higuchi Y, Mao ZW, Hirota S. Cysteine SH and Glutamate COOH Contributions to [NiFe] Hydrogenase Proton Transfer Revealed by Highly Sensitive FTIR Spectroscopy. Angew Chem Int Ed Engl 2019; 58:13285-13290. [PMID: 31343102 DOI: 10.1002/anie.201904472] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/10/2019] [Indexed: 11/12/2022]
Abstract
A [NiFe] hydrogenase (H2 ase) is a proton-coupled electron transfer enzyme that catalyses reversible H2 oxidation; however, its fundamental proton transfer pathway remains unknown. Herein, we observed the protonation of Cys546-SH and Glu34-COOH near the Ni-Fe site with high-sensitivity infrared difference spectra by utilizing Ni-C-to-Ni-L and Ni-C-to-Ni-SIa photoconversions. Protonated Cys546-SH in the Ni-L state was verified by the observed SH stretching frequency (2505 cm-1 ), whereas Cys546 was deprotonated in the Ni-C and Ni-SIa states. Glu34-COOH was double H-bonded in the Ni-L state, as determined by the COOH stretching frequency (1700 cm-1 ), and single H-bonded in the Ni-C and Ni-SIa states. Additionally, a stretching mode of an ordered water molecule was observed in the Ni-L and Ni-C states. These results elucidate the organized proton transfer pathway during the catalytic reaction of a [NiFe] H2 ase, which is regulated by the H-bond network of Cys546, Glu34, and an ordered water molecule.
Collapse
Affiliation(s)
- Hulin Tai
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.,MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Koji Nishikawa
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
| | - Yoshiki Higuchi
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
16
|
Tai H, Nishikawa K, Higuchi Y, Mao Z, Hirota S. Cysteine SH and Glutamate COOH Contributions to [NiFe] Hydrogenase Proton Transfer Revealed by Highly Sensitive FTIR Spectroscopy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904472] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hulin Tai
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama, Ikoma Nara 630-0192 Japan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Koji Nishikawa
- Graduate School of Life Science University of Hyogo 3-2-1 Koto Kamigori-cho, Ako-gun Hyogo 678-1297 Japan
| | - Yoshiki Higuchi
- Graduate School of Life Science University of Hyogo 3-2-1 Koto Kamigori-cho, Ako-gun Hyogo 678-1297 Japan
| | - Zong‐wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Shun Hirota
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama, Ikoma Nara 630-0192 Japan
| |
Collapse
|
17
|
Qiu S, Li Q, Xu Y, Shen S, Sun C. Learning from nature: Understanding hydrogenase enzyme using computational approach. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Siyao Qiu
- Science & Technology Innovation Institute Dongguan University of Technology Dongguan China
| | - Qinye Li
- School of Chemical Engineering Monash University Clayton Victoria Australia
| | - Yongjun Xu
- Science & Technology Innovation Institute Dongguan University of Technology Dongguan China
| | - Shaohua Shen
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Shaanxi China
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, and Center for Translational Atomaterials Swinburne University of Technology Hawthorn Victoria Australia
| |
Collapse
|
18
|
Infrared Characterization of the Bidirectional Oxygen-Sensitive [NiFe]-Hydrogenase from E. coli. Catalysts 2018. [DOI: 10.3390/catal8110530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
[NiFe]-hydrogenases are gas-processing metalloenzymes that catalyze the conversion of dihydrogen (H2) to protons and electrons in a broad range of microorganisms. Within the framework of green chemistry, the molecular proceedings of biological hydrogen turnover inspired the design of novel catalytic compounds for H2 generation. The bidirectional “O2-sensitive” [NiFe]-hydrogenase from Escherichia coli HYD-2 has recently been crystallized; however, a systematic infrared characterization in the presence of natural reactants is not available yet. In this study, we analyze HYD-2 from E. coli by in situ attenuated total reflection Fourier-transform infrared spectroscopy (ATR FTIR) under quantitative gas control. We provide an experimental assignment of all catalytically relevant redox intermediates alongside the O2- and CO-inhibited cofactor species. Furthermore, the reactivity and mutual competition between H2, O2, and CO was probed in real time, which lays the foundation for a comparison with other enzymes, e.g., “O2-tolerant” [NiFe]-hydrogenases. Surprisingly, only Ni-B was observed in the presence of O2 with no indications for the “unready” Ni-A state. The presented work proves the capabilities of in situ ATR FTIR spectroscopy as an efficient and powerful technique for the analysis of biological macromolecules and enzymatic small molecule catalysis.
Collapse
|
19
|
Tai H, Higuchi Y, Hirota S. Comprehensive reaction mechanisms at and near the Ni-Fe active sites of [NiFe] hydrogenases. Dalton Trans 2018. [PMID: 29532823 DOI: 10.1039/c7dt04910b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
[NiFe] hydrogenase (H2ase) catalyzes the oxidation of dihydrogen to two protons and two electrons and/or its reverse reaction. For this simple reaction, the enzyme has developed a sophisticated but intricate mechanism with heterolytic cleavage of dihydrogen (or a combination of a hydride and a proton), where its Ni-Fe active site exhibits various redox states. Recently, thermodynamic parameters of the acid-base equilibrium for activation-inactivation, a new intermediate in the catalytic reaction, and new crystal structures of [NiFe] H2ases have been reported, providing significant insights into the activation-inactivation and catalytic reaction mechanisms of [NiFe] H2ases. This Perspective provides an overview of the reaction mechanisms of [NiFe] H2ases based on these new findings.
Collapse
Affiliation(s)
- Hulin Tai
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan.
| | | | | |
Collapse
|
20
|
Tai H, Xu L, Nishikawa K, Higuchi Y, Hirota S. Equilibrium between inactive ready Ni-SI r and active Ni-SI a states of [NiFe] hydrogenase studied by utilizing Ni-SI r-to-Ni-SI a photoactivation. Chem Commun (Camb) 2018; 53:10444-10447. [PMID: 28884761 DOI: 10.1039/c7cc06061k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previously, the Ni-SIr state of [NiFe] hydrogenase was found to convert to the Ni-SIa state by light irradiation. Herein, large activation energies and a large kinetic isotope effect were obtained for the reconversion of the Ni-SIa state to the Ni-SIr state after the Ni-SIr-to-Ni-SIa photoactivation, suggesting that the Ni-SIa state reacts with H2O and leaves a bridging hydroxo ligand for the Ni-SIr state.
Collapse
Affiliation(s)
- Hulin Tai
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan. and CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Liyang Xu
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan.
| | - Koji Nishikawa
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yoshiki Higuchi
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan and Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Shun Hirota
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan. and CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
21
|
Tai H, Xu L, Inoue S, Nishikawa K, Higuchi Y, Hirota S. Photoactivation of the Ni-SIr state to the Ni-SIa state in [NiFe] hydrogenase: FT-IR study on the light reactivity of the ready Ni-SIr state and as-isolated enzyme revisited. Phys Chem Chem Phys 2018; 18:22025-30. [PMID: 27456760 DOI: 10.1039/c6cp04628b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Ni-SIr state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F was photoactivated to its Ni-SIa state by Ar(+) laser irradiation at 514.5 nm, whereas the Ni-SL state was light induced from a newly identified state, which was less active than any other identified state and existed in the "as-isolated" enzyme.
Collapse
Affiliation(s)
- Hulin Tai
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan. and CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Liyang Xu
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan.
| | - Seiya Inoue
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Koji Nishikawa
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yoshiki Higuchi
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan and Graduate School of Life Science, University of Hyogo, 3-2-1 Koto Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Shun Hirota
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan. and CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
22
|
Schilter D, Gray DL, Fuller AL, Rauchfuss TB. Synthetic Models for Nickel-Iron Hydrogenase Featuring Redox-Active Ligands. Aust J Chem 2017; 70:505-515. [PMID: 28819328 PMCID: PMC5555595 DOI: 10.1071/ch16614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nickel-iron hydrogenase enzymes efficiently and reversibly interconvert protons, electrons, and dihydrogen. These redox proteins feature iron-sulfur clusters that relay electrons to and from their active sites. Reported here are synthetic models for nickel-iron hydrogenase featuring redox-active auxiliaries that mimic the iron-sulfur cofactors. The complexes prepared are NiII(μ-H)FeIIFeII species of formula [(diphosphine)Ni(dithiolate)(μ-H)Fe(CO)2(ferrocenylphosphine)]+ or NiIIFeIFeII complexes [(diphosphine)Ni(dithiolate)Fe(CO)2(ferrocenylphosphine)]+ (diphosphine = Ph2P(CH2)2PPh2 or Cy2P(CH2)2PCy2; dithiolate = -S(CH2)3S-; ferrocenylphosphine = diphenylphosphinoferrocene, diphenylphosphinomethyl(nonamethylferrocene) or 1,1'-bis(diphenylphosphino)ferrocene). The hydride species is a catalyst for hydrogen evolution, while the latter hydride-free complexes can exist in four redox states - a feature made possible by the incorporation of the ferrocenyl groups. Mixed-valent complexes of 1,1'-bis(diphenylphosphino)ferrocene have one of the phosphine groups unbound, with these species representing advanced structural models with both a redox-active moiety (the ferrocene group) and a potential proton relay (the free phosphine) proximal to a nickel-iron dithiolate.
Collapse
Affiliation(s)
- David Schilter
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919, Republic of Korea
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Danielle L. Gray
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Amy L. Fuller
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Thomas B. Rauchfuss
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave., Urbana, IL 61801, USA
| |
Collapse
|
23
|
Ash PA, Hidalgo R, Vincent KA. Proton Transfer in the Catalytic Cycle of [NiFe] Hydrogenases: Insight from Vibrational Spectroscopy. ACS Catal 2017; 7:2471-2485. [PMID: 28413691 PMCID: PMC5387674 DOI: 10.1021/acscatal.6b03182] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/30/2017] [Indexed: 12/11/2022]
Abstract
![]()
Catalysis
of H2 production and oxidation reactions is
critical in renewable energy systems based around H2 as
a clean fuel, but the present reliance on platinum-based catalysts
is not sustainable. In nature, H2 is oxidized at minimal
overpotential and high turnover frequencies at [NiFe] catalytic sites
in hydrogenase enzymes. Although an outline mechanism has been established
for the [NiFe] hydrogenases involving heterolytic cleavage of H2 followed by a first and then second transfer of a proton
and electron away from the active site, details remain vague concerning
how the proton transfers are facilitated by the protein environment
close to the active site. Furthermore, although [NiFe] hydrogenases
from different organisms or cellular environments share a common active
site, they exhibit a broad range of catalytic characteristics indicating
the importance of subtle changes in the surrounding protein in controlling
their behavior. Here we review recent time-resolved infrared (IR)
spectroscopic studies and IR spectroelectrochemical studies carried
out in situ during electrocatalytic turnover. Additionally, we re-evaluate
the significant body of IR spectroscopic data on hydrogenase active
site states determined through more conventional solution studies,
in order to highlight mechanistic steps that seem to apply generally
across the [NiFe] hydrogenases, as well as steps which so far seem
limited to specific groups of these enzymes. This analysis is intended
to help focus attention on the key open questions where further work
is needed to assess important aspects of proton and electron transfer
in the mechanism of [NiFe] hydrogenases.
Collapse
Affiliation(s)
- Philip A. Ash
- Department
of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Ricardo Hidalgo
- Department
of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Kylie A. Vincent
- Department
of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, United Kingdom
| |
Collapse
|
24
|
Abstract
Hydrogenases are enzymes of great biotechnological relevance because they catalyse the interconversion of H2, water (protons) and electricity using non-precious metal catalytic active sites. Electrochemical studies into the reactivity of NiFe membrane-bound hydrogenases (MBH) have provided a particularly detailed insight into the reactivity and mechanism of this group of enzymes. Significantly, the control centre for enabling O2 tolerance has been revealed as the electron-transfer relay of FeS clusters, rather than the NiFe bimetallic active site. The present review paper will discuss how electrochemistry results have complemented those obtained from structural and spectroscopic studies, to present a complete picture of our current understanding of NiFe MBH.
Collapse
|
25
|
Schilter D, Camara JM, Huynh MT, Hammes-Schiffer S, Rauchfuss TB. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides. Chem Rev 2016; 116:8693-749. [PMID: 27353631 PMCID: PMC5026416 DOI: 10.1021/acs.chemrev.6b00180] [Citation(s) in RCA: 416] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogenase enzymes efficiently process H2 and protons at organometallic FeFe, NiFe, or Fe active sites. Synthetic modeling of the many H2ase states has provided insight into H2ase structure and mechanism, as well as afforded catalysts for the H2 energy vector. Particularly important are hydride-bearing states, with synthetic hydride analogues now known for each hydrogenase class. These hydrides are typically prepared by protonation of low-valent cores. Examples of FeFe and NiFe hydrides derived from H2 have also been prepared. Such chemistry is more developed than mimicry of the redox-inactive monoFe enzyme, although functional models of the latter are now emerging. Advances in physical and theoretical characterization of H2ase enzymes and synthetic models have proven key to the study of hydrides in particular, and will guide modeling efforts toward more robust and active species optimized for practical applications.
Collapse
Affiliation(s)
- David Schilter
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - James M. Camara
- Department of Chemistry, Yeshiva University, 500 West 185th Street, New York, New York 10033, United States
| | - Mioy T. Huynh
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Thomas B. Rauchfuss
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
26
|
Ogata H, Lubitz W, Higuchi Y. Structure and function of [NiFe] hydrogenases. J Biochem 2016; 160:251-258. [PMID: 27493211 DOI: 10.1093/jb/mvw048] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/06/2016] [Indexed: 12/22/2022] Open
Abstract
Hydrogenases catalyze the reversible conversion of molecular hydrogen to protons and electrons via a heterolytic splitting mechanism. The active sites of [NiFe] hydrogenases comprise a dinuclear Ni-Fe center carrying CO and CN- ligands. The catalytic activity of the standard (O2-sensitive) [NiFe] hydrogenases vanishes under aerobic conditions. The O2-tolerant [NiFe] hydrogenases can sustain H2 oxidation activity under atmospheric conditions. These hydrogenases have very similar active site structures that change the ligand sphere during the activation/catalytic process. An important structural difference between these hydrogenases has been found for the proximal iron-sulphur cluster located in the vicinity of the active site. This unprecedented [4Fe-3S]-6Cys cluster can supply two electrons, which lead to rapid recovery of the O2 inactivation, to the [NiFe] active site.
Collapse
Affiliation(s)
- Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
| | - Yoshiki Higuchi
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan .,RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.,CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
27
|
Greene BL, Wu CH, Vansuch GE, Adams MWW, Dyer RB. Proton Inventory and Dynamics in the Nia-S to Nia-C Transition of a [NiFe] Hydrogenase. Biochemistry 2016; 55:1813-25. [DOI: 10.1021/acs.biochem.5b01348] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brandon L. Greene
- Chemistry
Department, Emory University, Atlanta, Georgia 30322, United States
| | - Chang-Hao Wu
- Department
of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Gregory E. Vansuch
- Chemistry
Department, Emory University, Atlanta, Georgia 30322, United States
| | - Michael W. W. Adams
- Department
of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - R. Brian Dyer
- Chemistry
Department, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|