1
|
Newman-Stonebraker SH, Gerard TJ, Holland PL. Opportunities for Insight into the Mechanism of Efficient CO 2/CO Interconversion at a Nickel-Iron Cluster in CO Dehydrogenase. Chem 2024; 10:1655-1667. [PMID: 38966253 PMCID: PMC11221784 DOI: 10.1016/j.chempr.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The reduction of CO2 with low overpotential and high selectivity is a crucial challenge in catalysis. Fortunately, natural systems have evolved enzymes that achieve this catalytic reaction very efficiently at a complex nickel-iron-sulfur cluster within carbon monoxide dehydrogenase (CODH). Extensive biochemical, crystallographic, and spectroscopic work has been done to understand the structures and mechanism involved in the catalytic cycle, which are summarized here from the perspective of mechanistic organometallic chemistry. We highlight the ambiguities in the data and suggest experiments that could lead to clearer understanding of the mechanism and structures of intermediates at the active-site cluster. These include parallel crystallography and spectroscopy, as well as the preparation of synthetic analogues that help to interpret structural and spectroscopic signatures.
Collapse
|
2
|
Kim SM, Kang SH, Lee J, Heo Y, Poloniataki EG, Kang J, Yoon HJ, Kong SY, Yun Y, Kim H, Ryu J, Lee HH, Kim YH. Identifying a key spot for electron mediator-interaction to tailor CO dehydrogenase's affinity. Nat Commun 2024; 15:2732. [PMID: 38548760 PMCID: PMC10979024 DOI: 10.1038/s41467-024-46909-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Fe‒S cluster-harboring enzymes, such as carbon monoxide dehydrogenases (CODH), employ sophisticated artificial electron mediators like viologens to serve as potent biocatalysts capable of cleaning-up industrial off-gases at stunning reaction rates. Unraveling the interplay between these enzymes and their associated mediators is essential for improving the efficiency of CODHs. Here we show the electron mediator-interaction site on ChCODHs (Ch, Carboxydothermus hydrogenoformans) using a systematic approach that leverages the viologen-reactive characteristics of superficial aromatic residues. By enhancing mediator-interaction (R57G/N59L) near the D-cluster, the strategically tailored variants exhibit a ten-fold increase in ethyl viologen affinity relative to the wild-type without sacrificing the turn-over rate (kcat). Viologen-complexed structures reveal the pivotal positions of surface phenylalanine residues, serving as external conduits for the D-cluster to/from viologen. One variant (R57G/N59L/A559W) can treat a broad spectrum of waste gases (from steel-process and plastic-gasification) containing O2. Decoding mediator interactions will facilitate the development of industrially high-efficient biocatalysts encompassing gas-utilizing enzymes.
Collapse
Affiliation(s)
- Suk Min Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
| | - Sung Heuck Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jinhee Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Yoonyoung Heo
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eleni G Poloniataki
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jingu Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - So Yeon Kong
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yaejin Yun
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyunwoo Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jungki Ryu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
3
|
Pauleta SR, Grazina R, Carepo MS, Moura JJ, Moura I. Iron-sulfur clusters – functions of an ancient metal site. COMPREHENSIVE INORGANIC CHEMISTRY III 2023:105-173. [DOI: 10.1016/b978-0-12-823144-9.00116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
White DW, Esckilsen D, Lee SK, Ragsdale SW, Dyer RB. Efficient, Light-Driven Reduction of CO 2 to CO by a Carbon Monoxide Dehydrogenase-CdSe/CdS Nanorod Photosystem. J Phys Chem Lett 2022; 13:5553-5556. [PMID: 35696266 PMCID: PMC10176083 DOI: 10.1021/acs.jpclett.2c01412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The solar conversion of CO2 to low carbon fuels has been heralded as a potential solution to combat the rise in greenhouse gas emissions. Here we report the first light-driven activation of [NiFe] CODH II from Carboxydothermus hydrogenoformans for the reduction of CO2 to CO. To accomplish this, a hybrid photosystem composed of CODH II and CdSe/CdS dot-in-rod nanocrystals was developed. By incorporating a low-potential redox mediator to assist electron transfer, quantum yields up to 19% and turnover frequencies of 9 s-1 were achieved. These results represent a new standard in efficient CO2 reduction by an enzyme-based photocatalytic systems. Furthermore, successful photoactivation of CODH II allows for future exploration into the enzyme's not fully understood mechanism.
Collapse
Affiliation(s)
- David W White
- Department of Chemistry, Emory University Atlanta, Georgia 30322, United States
| | - Daniel Esckilsen
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, United States
| | - Seung Kyu Lee
- Department of Chemistry, Emory University Atlanta, Georgia 30322, United States
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, United States
| | - R Brian Dyer
- Department of Chemistry, Emory University Atlanta, Georgia 30322, United States
| |
Collapse
|
5
|
Contaldo U, Curtil M, Pérard J, Cavazza C, Le Goff A. A Pyrene-Triazacyclononane Anchor Affords High Operational Stability for CO 2 RR by a CNT-Supported Histidine-Tagged CODH. Angew Chem Int Ed Engl 2022; 61:e202117212. [PMID: 35274429 PMCID: PMC9401053 DOI: 10.1002/anie.202117212] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/10/2022]
Abstract
An original 1-acetato-4-(1-pyrenyl)-1,4,7-triazacyclononane (AcPyTACN) was synthesized for the immobilization of a His-tagged recombinant CODH from Rhodospirillum rubrum (RrCODH) on carbon-nanotube electrodes. The strong binding of the enzyme at the Ni-AcPyTACN complex affords a high current density of 4.9 mA cm-2 towards electroenzymatic CO2 reduction and a high stability of more than 6×106 TON when integrated on a gas-diffusion bioelectrode.
Collapse
Affiliation(s)
- Umberto Contaldo
- Univ. Grenoble Alpes, CNRS, DCM38000GrenobleFrance
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM38000GrenobleFrance
| | | | - Julien Pérard
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM38000GrenobleFrance
| | | | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS, DCM38000GrenobleFrance
| |
Collapse
|
6
|
contaldo U, curtil M, perard J, cavazza C, Le Goff A. A pyrene‐triazacyclononane anchor affords high operational stability for CO2RR by a CNT‐supported histidine‐tagged CODH. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- umberto contaldo
- CEA BIG: Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble lcbm FRANCE
| | - mathieu curtil
- Université Grenoble Alpes: Universite Grenoble Alpes DCM FRANCE
| | - Julien perard
- CEA lRlG: Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble lcbm FRANCE
| | - christine cavazza
- CEA BIG: Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble LCBM FRANCE
| | - Alan Le Goff
- Universite Grenoble Alpes/CNRS Département de Chimie Moléculaire 570 rue de la chimie 38041 Grenoble FRANCE
| |
Collapse
|
7
|
Treviño RE, Shafaat HS. Protein-based models offer mechanistic insight into complex nickel metalloenzymes. Curr Opin Chem Biol 2022; 67:102110. [PMID: 35101820 DOI: 10.1016/j.cbpa.2021.102110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 11/03/2022]
Abstract
There are ten nickel enzymes found across biological systems, each with a distinct active site and reactivity that spans reductive, oxidative, and redox-neutral processes. We focus on the reductive enzymes, which catalyze reactions that are highly germane to the modern-day climate crisis: [NiFe] hydrogenase, carbon monoxide dehydrogenase, acetyl coenzyme A synthase, and methyl coenzyme M reductase. The current mechanistic understanding of each enzyme system is reviewed along with existing knowledge gaps, which are addressed through the development of protein-derived models, as described here. This opinion is intended to highlight the advantages of using robust protein scaffolds for modeling multiscale contributions to reactivity and inspire the development of novel artificial metalloenzymes for other small molecule transformations.
Collapse
Affiliation(s)
- Regina E Treviño
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Understanding the local chemical environment of bioelectrocatalysis. Proc Natl Acad Sci U S A 2022; 119:2114097119. [PMID: 35058361 PMCID: PMC8795565 DOI: 10.1073/pnas.2114097119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
Bioelectrochemistry employs an array of high-surface-area meso- and macroporous electrode architectures to increase protein loading and the electrochemical current response. While the local chemical environment has been studied in small-molecule and heterogenous electrocatalysis, conditions in enzyme electrochemistry are still commonly established based on bulk solution assays, without appropriate consideration of the nonequilibrium conditions of the confined electrode space. Here, we apply electrochemical and computational techniques to explore the local environment of fuel-producing oxidoreductases within porous electrode architectures. This improved understanding of the local environment enabled simple manipulation of the electrolyte solution by adjusting the bulk pH and buffer pKa to achieve an optimum local pH for maximal activity of the immobilized enzyme. When applied to macroporous inverse opal electrodes, the benefits of higher loading and increased mass transport were employed, and, consequently, the electrolyte adjusted to reach −8.0 mA ⋅ cm−2 for the H2 evolution reaction and −3.6 mA ⋅ cm−2 for the CO2 reduction reaction (CO2RR), demonstrating an 18-fold improvement on previously reported enzymatic CO2RR systems. This research emphasizes the critical importance of understanding the confined enzymatic chemical environment, thus expanding the known capabilities of enzyme bioelectrocatalysis. These considerations and insights can be directly applied to both bio(photo)electrochemical fuel and chemical synthesis, as well as enzymatic fuel cells, to significantly improve the fundamental understanding of the enzyme–electrode interface as well as device performance.
Collapse
|
9
|
Meneghello M, Léger C, Fourmond V. Electrochemical Studies of CO 2 -Reducing Metalloenzymes. Chemistry 2021; 27:17542-17553. [PMID: 34506631 DOI: 10.1002/chem.202102702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Indexed: 11/07/2022]
Abstract
Only two enzymes are capable of directly reducing CO2 : CO dehydrogenase, which produces CO at a [NiFe4 S4 ] active site, and formate dehydrogenase, which produces formate at a mononuclear W or Mo active site. Both metalloenzymes are very rapid, energy-efficient and specific in terms of product. They have been connected to electrodes with two different objectives. A series of studies used protein film electrochemistry to learn about different aspects of the mechanism of these enzymes (reactivity with substrates, inhibitors…). Another series focused on taking advantage of the catalytic performance of these enzymes to build biotechnological devices, from CO2 -reducing electrodes to full photochemical devices performing artificial photosynthesis. Here, we review all these works.
Collapse
Affiliation(s)
- Marta Meneghello
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, and, Institut Microbiologie, Bioénergies et Biotechnologie, 31 chemin J. Aiguier, 13402, Marseille Cedex 20, France
| | - Christophe Léger
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, and, Institut Microbiologie, Bioénergies et Biotechnologie, 31 chemin J. Aiguier, 13402, Marseille Cedex 20, France
| | - Vincent Fourmond
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, and, Institut Microbiologie, Bioénergies et Biotechnologie, 31 chemin J. Aiguier, 13402, Marseille Cedex 20, France
| |
Collapse
|
10
|
Maiti BK, Maia LB, Moura JJG. Sulfide and transition metals - A partnership for life. J Inorg Biochem 2021; 227:111687. [PMID: 34953313 DOI: 10.1016/j.jinorgbio.2021.111687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/13/2022]
Abstract
Sulfide and transition metals often came together in Biology. The variety of possible structural combinations enabled living organisms to evolve an array of highly versatile metal-sulfide centers to fulfill different physiological roles. The ubiquitous iron‑sulfur centers, with their structural, redox, and functional diversity, are certainly the best-known partners, but other metal-sulfide centers, involving copper, nickel, molybdenum or tungsten, are equally crucial for Life. This review provides a concise overview of the exclusive sulfide properties as a metal ligand, with emphasis on the structural aspects and biosynthesis. Sulfide as catalyst and as a substrate is discussed. Different enzymes are considered, including xanthine oxidase, formate dehydrogenases, nitrogenases and carbon monoxide dehydrogenases. The sulfide effect on the activity and function of iron‑sulfur, heme and zinc proteins is also addressed.
Collapse
Affiliation(s)
- Biplab K Maiti
- National Institute of Technology Sikkim, Department of Chemistry, Ravangla Campus, Barfung Block, Ravangla Sub Division, South Sikkim 737139, India.
| | - Luisa B Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, Campus de Caparica, Portugal.
| | - José J G Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, Campus de Caparica, Portugal.
| |
Collapse
|
11
|
|
12
|
Lewis LC, Shafaat HS. Reversible Electron Transfer and Substrate Binding Support [NiFe 3S 4] Ferredoxin as a Protein-Based Model for [NiFe] Carbon Monoxide Dehydrogenase. Inorg Chem 2021; 60:13869-13875. [PMID: 34488341 DOI: 10.1021/acs.inorgchem.1c01323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The nickel-iron carbon monoxide dehydrogenase (CODH) enzyme catalyzes the reversible and selective interconversion of carbon dioxide (CO2) to carbon monoxide (CO) with high rates and negligible overpotential. Despite decades of research, many questions remain about this complex metalloenzyme system. A simplified model enzyme could provide substantial insight into biological carbon cycling. Here, we demonstrate reversible electron transfer and binding of both CO and cyanide, a substrate and an inhibitor of CODH, respectively, in a Pyrococcus furiosus (Pf) ferredoxin (Fd) protein that has been reconstituted with a nickel-iron sulfide cluster ([NiFe3S4] Fd). The [NiFe3S4] cluster mimics the core of the native CODH active site and thus serves as a protein-based structural model of the CODH subsite. Notably, despite binding cyanide, no CO binding is observed for the physiological [Fe4S4] clusters in Pf Fd, providing chemical rationale underlying the evolution of a site-differentiated cluster for substrate conversion in native CODH. The demonstration of a substrate-binding metalloprotein model of CODH sets the stage for high-resolution spectroscopic and mechanistic studies correlating the subsite structure and function, ultimately guiding the design of anthropogenic catalysts that harness the advantages of CODH for effective CO2 reduction.
Collapse
Affiliation(s)
- Luke C Lewis
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
13
|
Contaldo U, Guigliarelli B, Perard J, Rinaldi C, Le Goff A, Cavazza C. Efficient Electrochemical CO 2/CO Interconversion by an Engineered Carbon Monoxide Dehydrogenase on a Gas-Diffusion Carbon Nanotube-Based Bioelectrode. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Umberto Contaldo
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
- University Grenoble Alpes, DCM UMR 5250, BEA, F-38000 Grenoble, France
| | | | - Julien Perard
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | - Clara Rinaldi
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | - Alan Le Goff
- University Grenoble Alpes, DCM UMR 5250, BEA, F-38000 Grenoble, France
| | - Christine Cavazza
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| |
Collapse
|
14
|
Wittenborn EC, Guendon C, Merrouch M, Benvenuti M, Fourmond V, Léger C, Drennan CL, Dementin S. The Solvent-Exposed Fe-S D-Cluster Contributes to Oxygen-Resistance in Desulfovibrio vulgaris Ni-Fe Carbon Monoxide Dehydrogenase. ACS Catal 2020; 10:7328-7335. [PMID: 32655979 PMCID: PMC7343238 DOI: 10.1021/acscatal.0c00934] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/25/2020] [Indexed: 11/30/2022]
Abstract
Ni-Fe CO-dehydrogenases (CODHs) catalyze the conversion between CO and CO2 using a chain of Fe-S clusters to mediate long-range electron transfer. One of these clusters, the D-cluster, is surface-exposed and serves to transfer electrons between CODH and external redox partners. These enzymes tend to be extremely O2-sensitive and are always manipulated under strictly anaerobic conditions. However, the CODH from Desulfovibrio vulgaris (Dv) appears unique: exposure to micromolar concentrations of O2 on the minutes-time scale only reversibly inhibits the enzyme, and full activity is recovered after reduction. Here, we examine whether this unusual property of Dv CODH results from the nature of its D-cluster, which is a [2Fe-2S] cluster, instead of the [4Fe-4S] cluster observed in all other characterized CODHs. To this aim, we produced and characterized a Dv CODH variant where the [2Fe-2S] D-cluster is replaced with a [4Fe-4S] D-cluster through mutagenesis of the D-cluster-binding sequence motif. We determined the crystal structure of this CODH variant to 1.83-Å resolution and confirmed the incorporation of a [4Fe-4S] D-cluster. We show that upon long-term O2-exposure, the [4Fe-4S] D-cluster degrades, whereas the [2Fe-2S] D-cluster remains intact. Crystal structures of the Dv CODH variant exposed to O2 for increasing periods of time provide snapshots of [4Fe-4S] D-cluster degradation. We further show that the WT enzyme purified under aerobic conditions retains 30% activity relative to a fully anaerobic purification, compared to 10% for the variant, and the WT enzyme loses activity more slowly than the variant upon prolonged aerobic storage. The D-cluster is therefore a key site of irreversible oxidative damage in Dv CODH, and the presence of a [2Fe-2S] D-cluster contributes to the O2-tolerance of this enzyme. Together, these results relate O2-sensitivity with the details of the protein structure in this family of enzymes.
Collapse
Affiliation(s)
| | - Chloé Guendon
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Mériem Merrouch
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Martino Benvenuti
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Vincent Fourmond
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Christophe Léger
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Catherine L. Drennan
- Bio-inspired Solar Energy Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Sébastien Dementin
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France
| |
Collapse
|
15
|
Isegawa M, Matsumoto T, Ogo S. Selective Oxidation of H 2 and CO by NiIr Catalyst in Aqueous Solution: A DFT Mechanistic Study. Inorg Chem 2020; 59:1014-1028. [PMID: 31898897 DOI: 10.1021/acs.inorgchem.9b02400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One of the challenges in utilizing hydrogen gas (H2) as a sustainable fossil fuel alternative is the inhibition of H2 oxidation by carbon monoxide (CO), which is involved in the industrial production of H2 sources. To solve this problem, a catalyst that selectively oxidizes either CO or H2 or one that co-oxidizes H2 and CO is needed. Recently, a NiIr catalyst [NiIICl(X)IrIIICl(η5-C5Me5)], (X = N,N'-dimethyl-3,7-diazanonane-1,9-dithiolate), which efficiently and selectively oxidizes either H2 or CO depending on the pH, has been developed (Angew. Chem. Int. Ed. 2017, 56, 9723-9726). In the present work, density functional theory (DFT) calculations are employed to elucidate the pH-dependent reaction mechanisms of H2 and CO oxidation catalyzed by this NiIr catalyst. During H2 oxidation, our calculations suggest that dihydrogen binds to the Ir center and generates an Ir(III)-dihydrogen complex, followed by subsequent isomerization to an Ir(V)-dihydride species. Then, a proton is abstracted by a buffer base, CH3COO-, resulting in the formation of a hydride complex. The catalytic cycle completes with electron transfer from the hydride complex to a protonated 2,6-dichlorobenzeneindophenol (DCIP) and a proton transfer from the oxidized hydride complex to a buffer base. The CO oxidation mechanism involves three distinct steps, i.e., (1) formation of a metal carbonyl complex, (2) formation of a metallocarboxylic acid, and (3) conversion of the metallocarboxylic acid to a hydride complex. The formation of the metallocarboxylic acid involves nucleophilic attack of OH- to the carbonyl-C followed by a large structural change with concomitant cleavage of the Ir-S bond and rotation of the COOH group along the NiIr axis. During the conversion of the metallocarboxylic acid to the hydride complex, intramolecular proton transfer followed by removal of CO2 leads to the formation of the hydride complexes. In addition, the barrier heights for the binding of small molecules (H2, OH-, H2O, and CO) to Ir were calculated, and the results indicated that dissociation from Ir is a faster process than the binding of H2O and H2. These calculations indicate that H2 oxidation is inhibited by CO and OH- and thus prefers acidic conditions. In contrast, the CO oxidation reactions occur more favorably under basic conditions, as the formation of the metallocarboxylic acid involves OH- attack to a carbonyl-C and the binding of OH- to Ni largely stabilizes the triplet spin state of the complex. Taken together, these calculations provide a rationale for the experimentally observed pH-dependent, selective oxidations of H2 and CO.
Collapse
Affiliation(s)
- Miho Isegawa
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) , Kyushu University , 744 Moto-oka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Takahiro Matsumoto
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) , Kyushu University , 744 Moto-oka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Seiji Ogo
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) , Kyushu University , 744 Moto-oka , Nishi-ku, Fukuoka 819-0395 , Japan
| |
Collapse
|
16
|
Schneider CR, Lewis LC, Shafaat HS. The good, the neutral, and the positive: buffer identity impacts CO 2 reduction activity by nickel(ii) cyclam. Dalton Trans 2019; 48:15810-15821. [PMID: 31560360 PMCID: PMC6843992 DOI: 10.1039/c9dt03114f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Development of new synthetic catalysts for CO2 reduction has been a central focus of chemical research efforts towards mitigating rising global carbon dioxide levels. In parallel with generating new molecular systems, characterization and benchmarking of these compounds across well-defined catalytic conditions are essential. Nickel(ii) cyclam is known to be an active catalyst for CO2 reduction to CO. The degree of selectivity and activity has been found to differ widely across electrodes used and upon modification of the ligand environment, though without a molecular-level understanding of this variation. Moreover, while proton transfer is key for catalytic activity, the effects of varying the nature of the proton donor remain unclear. In this work, a systematic investigation of the electrochemical and light-driven catalytic behaviour of nickel(ii) cyclam under different aqueous reaction conditions has been performed. The activity and selectivity are seen to vary widely depending on the nature of the buffering agent, even at a constant pH, highlighting the importance of proton transfer for catalysis. Buffer binding to the nickel center is negatively correlated with selectivity, and cationic buffers show high levels of selectivity and activity. These results are discussed in the context of molecular design principles for developing increasingly efficient and selective catalysts. Moreover, identifying these key contributors towards activity has implications for understanding the role of the conserved secondary coordination environments in naturally occurring CO2-reducing enzymes, including carbon monoxide dehydrogenase and formate dehydrogenase.
Collapse
Affiliation(s)
- Camille R Schneider
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Luke C Lewis
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH, USA.
| | - Hannah S Shafaat
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA and Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
17
|
Abstract
Carbon monoxide dehydrogenases (CODHs) catalyze the reversible oxidation of CO with water to CO2, two electrons, and two protons. Two classes of CODHs exist, having evolved from different scaffolds featuring active sites built from different transition metals. The basic properties of both classes are described in this overview chapter.
Collapse
Affiliation(s)
- Jae-Hun Jeoung
- Institute of Biology, Structural Biology and Biochemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Berta M Martins
- Institute of Biology, Structural Biology and Biochemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Holger Dobbek
- Institute of Biology, Structural Biology and Biochemistry, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
18
|
Wittenborn EC, Merrouch M, Ueda C, Fradale L, Léger C, Fourmond V, Pandelia ME, Dementin S, Drennan CL. Redox-dependent rearrangements of the NiFeS cluster of carbon monoxide dehydrogenase. eLife 2018; 7:39451. [PMID: 30277213 PMCID: PMC6168284 DOI: 10.7554/elife.39451] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/23/2018] [Indexed: 01/03/2023] Open
Abstract
The C-cluster of the enzyme carbon monoxide dehydrogenase (CODH) is a structurally distinctive Ni-Fe-S cluster employed to catalyze the reduction of CO2 to CO as part of the Wood-Ljungdahl carbon fixation pathway. Using X-ray crystallography, we have observed unprecedented conformational dynamics in the C-cluster of the CODH from Desulfovibrio vulgaris, providing the first view of an oxidized state of the cluster. Combined with supporting spectroscopic data, our structures reveal that this novel, oxidized cluster arrangement plays a role in avoiding irreversible oxidative degradation at the C-cluster. Furthermore, mutagenesis of a conserved cysteine residue that binds the C-cluster in the oxidized state but not in the reduced state suggests that the oxidized conformation could be important for proper cluster assembly, in particular Ni incorporation. Together, these results lay a foundation for future investigations of C-cluster activation and assembly, and contribute to an emerging paradigm of metallocluster plasticity.
Collapse
Affiliation(s)
- Elizabeth C Wittenborn
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Mériem Merrouch
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Marseille, France
| | - Chie Ueda
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Laura Fradale
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Marseille, France
| | - Christophe Léger
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Marseille, France
| | - Vincent Fourmond
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Marseille, France
| | | | - Sébastien Dementin
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Marseille, France
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States.,Bio-inspired Solar Energy Program, Canadian Institute for Advanced Research, Toronto, Canada
| |
Collapse
|
19
|
Zhang L, Can M, Ragsdale SW, Armstrong FA. Fast and Selective Photoreduction of CO 2 to CO Catalyzed by a Complex of Carbon Monoxide Dehydrogenase, TiO 2, and Ag Nanoclusters. ACS Catal 2018; 8:2789-2795. [PMID: 31448153 DOI: 10.1021/acscatal.7b04308] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Selective, visible-light-driven conversion of CO2 to CO with a turnover frequency of 20 s-1 under visible light irradiation at 25 °C is catalyzed by an aqueous colloidal system comprising a pseudoternary complex formed among carbon monoxide dehydrogenase (CODH), silver nanoclusters stabilized by polymethacrylic acid (AgNCs-PMAA), and TiO2 nanoparticles. The photocatalytic assembly, which is stable over several hours and for at least 250000 turnovers of the enzyme's active site, was investigated by separate electrochemical (dark) and fluorescence measurements to establish specific connectivities among the components. The data show (a) that a coating of AgNCs-PMAA on TiO2 greatly enhances its ability as an electrode for CODH- based electrocatalysis of CO2 reduction and (b) that the individual Ag nanoclusters interact directly and dynamically with the enzyme surface, most likely at exposed cysteine thiols. The results lead to a model for photocatalysis in which the AgNCs act as photosensitizers, CODH captures the excited electrons for catalysis, and TiO2 mediates hole transfer from the AgNC valence band to sacrificial electron donors. The results greatly increase the benchmark for reversible CO2 reduction under ambient conditions and demonstrate that, with such efficient catalysts, the limiting factor is the supply of photogenerated electrons.
Collapse
Affiliation(s)
- Liyun Zhang
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Mehmet Can
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, United States
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, United States
| | - Fraser A. Armstrong
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| |
Collapse
|
20
|
Structure and electrochemistry of proteins harboring iron-sulfur clusters of different nuclearities. Part I. [4Fe-4S] + [2Fe-2S] iron-sulfur proteins. J Struct Biol 2017; 200:1-19. [DOI: 10.1016/j.jsb.2017.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/25/2017] [Indexed: 01/08/2023]
|
21
|
Ogo S, Mori Y, Ando T, Matsumoto T, Yatabe T, Yoon K, Hayashi H, Asano M. One Model, Two Enzymes: Activation of Hydrogen and Carbon Monoxide. Angew Chem Int Ed Engl 2017; 56:9723-9726. [DOI: 10.1002/anie.201704864] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Seiji Ogo
- Center for Small Molecule EnergyDepartment of Chemistry and BiochemistryGraduate School of EngineeringKyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Yuki Mori
- Center for Small Molecule EnergyDepartment of Chemistry and BiochemistryGraduate School of EngineeringKyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Tatsuya Ando
- Center for Small Molecule EnergyDepartment of Chemistry and BiochemistryGraduate School of EngineeringKyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- JNC Corporation 2-1, Otemachi 2-chome, Chiyoda-ku Tokyo 100-8105 Japan
| | - Takahiro Matsumoto
- Center for Small Molecule EnergyDepartment of Chemistry and BiochemistryGraduate School of EngineeringKyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Takeshi Yatabe
- Center for Small Molecule EnergyDepartment of Chemistry and BiochemistryGraduate School of EngineeringKyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Ki‐Seok Yoon
- Center for Small Molecule EnergyDepartment of Chemistry and BiochemistryGraduate School of EngineeringKyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Hideki Hayashi
- JNC Corporation 2-1, Otemachi 2-chome, Chiyoda-ku Tokyo 100-8105 Japan
| | - Masashi Asano
- JNC Corporation 2-1, Otemachi 2-chome, Chiyoda-ku Tokyo 100-8105 Japan
| |
Collapse
|
22
|
Ogo S, Mori Y, Ando T, Matsumoto T, Yatabe T, Yoon K, Hayashi H, Asano M. One Model, Two Enzymes: Activation of Hydrogen and Carbon Monoxide. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Seiji Ogo
- Center for Small Molecule EnergyDepartment of Chemistry and BiochemistryGraduate School of EngineeringKyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Yuki Mori
- Center for Small Molecule EnergyDepartment of Chemistry and BiochemistryGraduate School of EngineeringKyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Tatsuya Ando
- Center for Small Molecule EnergyDepartment of Chemistry and BiochemistryGraduate School of EngineeringKyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- JNC Corporation 2-1, Otemachi 2-chome, Chiyoda-ku Tokyo 100-8105 Japan
| | - Takahiro Matsumoto
- Center for Small Molecule EnergyDepartment of Chemistry and BiochemistryGraduate School of EngineeringKyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Takeshi Yatabe
- Center for Small Molecule EnergyDepartment of Chemistry and BiochemistryGraduate School of EngineeringKyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Ki‐Seok Yoon
- Center for Small Molecule EnergyDepartment of Chemistry and BiochemistryGraduate School of EngineeringKyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Hideki Hayashi
- JNC Corporation 2-1, Otemachi 2-chome, Chiyoda-ku Tokyo 100-8105 Japan
| | - Masashi Asano
- JNC Corporation 2-1, Otemachi 2-chome, Chiyoda-ku Tokyo 100-8105 Japan
| |
Collapse
|
23
|
Merrouch M, Hadj‐Saïd J, Domnik L, Dobbek H, Léger C, Dementin S, Fourmond V. O
2
Inhibition of Ni‐Containing CO Dehydrogenase Is Partly Reversible. Chemistry 2015; 21:18934-8. [DOI: 10.1002/chem.201502835] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Meriem Merrouch
- Aix‐Marseille University, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, 13402 Marseille cedex 20, (France)
| | - Jessica Hadj‐Saïd
- Aix‐Marseille University, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, 13402 Marseille cedex 20, (France)
| | - Lilith Domnik
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt‐Universität zu Berlin, Unter den Linden 6, 10099 Berlin (Germany)
| | - Holger Dobbek
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt‐Universität zu Berlin, Unter den Linden 6, 10099 Berlin (Germany)
| | - Christophe Léger
- Aix‐Marseille University, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, 13402 Marseille cedex 20, (France)
| | - Sébastien Dementin
- Aix‐Marseille University, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, 13402 Marseille cedex 20, (France)
| | - Vincent Fourmond
- Aix‐Marseille University, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, 13402 Marseille cedex 20, (France)
| |
Collapse
|