1
|
Ray S, Ghosh D. Efficient photodeactivation mechanism in an unnatural nucleic acid base. Phys Chem Chem Phys 2025. [PMID: 40433779 DOI: 10.1039/d5cp00986c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
5-aza-7-deazaguanine (5N7C-G), also known as P, is an unnatural nucleic acid base (NAB) closely related in structure to the natural NAB guanine. It forms a Watson-Crick base pair with the unnatural NAB Z synthesized by Benner and co-workers. We study the ultrafast decay pathways for this modified NAB with high-level multireference methods. We observe from both static and dynamic studies that there are multiple deactivation channels with significant differences in energetics and, therefore, timescales. The nonradiative deactivation mechanisms at sub-picosecond timescales are remarkably similar to those of the natural NAB guanine. These findings explain the experimental observations of Krul et al. [Krul et al., Photochem. Photobiol., 2023, 99, 693-705].
Collapse
Affiliation(s)
- Somsuta Ray
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| |
Collapse
|
2
|
Pradeep Kumar AK, Santra S, Ghosh D. Photophysics of Nitro-Substituted Unnatural Nucleic Acid Base. J Phys Chem A 2024; 128:9551-9558. [PMID: 39471278 DOI: 10.1021/acs.jpca.4c03948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The unnatural nucleic acid base (uNAB), 6-amino-3-methyl-5-nitropyridin-2(1H)one, often referred to as Z can form a base pair with the uNAB 2-aminoimidazo[1,2-a]-1,3,5-triazin-4(8H)-one (referred to as P) and is analogous to a guanine-cytosine (G-C) pair. However, it is well-known that the nonradiative decay pathway of the P-Z pair is significantly different from that of the G-C pair (Cui et al., Front. Chem. 2020, 8, 605117-605125). In this work, we study the excited state processes in Z using state-of-the-art multireference methods and dynamical techniques to ascertain the predominant nonradiative channels. We find that unlike in the natural NABs, the excited state processes in Z are driven primarily by the -NO2 group rotation. The electron-withdrawing effect of the -NO2 substituent plays a crucial role. We further ascertained that ultrafast deactivation channels are possible in Z and identified the stationary point geometries that are responsible for these channels.
Collapse
Affiliation(s)
| | - Supriyo Santra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
3
|
Debnath T, Cisneros GA. Investigation of the stability of D5SIC-DNAM-incorporated DNA duplex in Taq polymerase binary system: a systematic classical MD approach. Phys Chem Chem Phys 2024; 26:7287-7295. [PMID: 38353000 PMCID: PMC11078294 DOI: 10.1039/d3cp05571j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
DNA polymerases are fundamental enzymes that play a crucial role in processing DNA with high fidelity and accuracy ensuring the faithful transmission of genetic information. The recognition of unnatural base pairs (UBPs) by polymerases, enabling their replication, represents a significant and groundbreaking discovery with profound implications for genetic expansion. Romesberg et al. examined the impact of DNA containing 2,6-dimethyl-2H-isoquiniline-1-thione: D5SIC (DS) and 2-methoxy-3-methylnaphthalene: DNAM (DN) UBPs bound to T. aquaticus DNA polymerase (Taq) through crystal structure analysis. Here, we have used polarizable and nonpolarizable classical molecular dynamics (MD) simulations to investigate the structural aspects and stability of Taq in complex with a DNA duplex including a DS-DN pair in the terminal 3' and 5' positions. Our results suggest that the flexibility of UBP-incorporated DNA in the terminal position is arrested by the polymerase, thus preventing fraying and mispairing. Our investigation also reveals that the UBP remains in an intercalated conformation inside the active site, exhibiting two distinct orientations in agreement with experimental findings. Our analysis pinpoints particular residues responsible for favorable interactions with the UBP, with some relying on van der Waals interactions while other on Coulombic forces.
Collapse
Affiliation(s)
- Tanay Debnath
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA.
| | - G Andrés Cisneros
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA.
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA
| |
Collapse
|
4
|
Debnath T, Cisneros GA. Investigation of dynamical flexibility of D5SIC-DNAM inside DNA duplex in aqueous solution: a systematic classical MD approach. Phys Chem Chem Phys 2024; 26:7435-7445. [PMID: 38353005 PMCID: PMC11080001 DOI: 10.1039/d3cp05572h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Incorporation of artificial 3rd base pairs (unnatural base pairs, UBPs) has emerged as a fundamental technique in pursuit of expanding the genetic alphabet. 2,6-Dimethyl-2H-isoquiniline-1-thione: D5SIC (DS) and 2-methoxy-3-methylnaphthalene: DNAM (DN), a potential unnatural base pair (UBP) developed by Romesberg and colleagues, has been shown to have remarkable capability for replication within DNA. Crystal structures of a Taq polymerase/double-stranded DNA (ds-DNA) complex containing a DS-DN pair in the 3' terminus showed a parallelly stacked geometry for the pre-insertion, and an intercalated geometry for the post-insertion structure. Unconventional orientations of DS-DN inside a DNA duplex have inspired scientists to investigate the conformational orientations and structural properties of UBP-incorporated DNA. In recent years, computational simulations have been used to investigate the geometry of DS-DN within the DNA duplex; nevertheless, unresolved questions persist owing to inconclusive findings. In this work, we investigate the structural and dynamical properties of DS and DN inside a ds-DNA strand in aqueous solution considering both short and long DNA templates using polarizable, and non-polarizable classical MD simulations. Flexible conformational change of UBP with major populations of Watson-Crick-Franklin (WCF) and three distinct non-Watson-Crick-Franklin (nWCFP1, nWCFP2, nWCFO) conformations through intra and inter-strand flipping have been observed. Our results suggest that a dynamical conformational change leads to the production of diffierent conformational distribution for the systems. Simulations with a short ds-DNA duplex suggest nWCF (P1 and O) as the predominant structures, whereas long ds-DNA duplex simulations indicate almost equal populations of WCF, nWCFP1, nWCFO. DS-DN in the terminal position is found to be more flexible with occasional mispairing and fraying. Overall, these results suggest flexibility and dynamical conformational change of the UBP as well as indicate varied conformational distribution irrespective of starting orientation of the UBP and length og DNA strand.
Collapse
Affiliation(s)
- Tanay Debnath
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA.
| | - G Andrés Cisneros
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA.
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA
| |
Collapse
|
5
|
Vishwakarma K, Ravi S, Mittal S. Ab initio Modeling of Hydrogen Bonding of Remdesivir and Adenosine with Uridine. Chemphyschem 2024; 25:e202300552. [PMID: 37983746 DOI: 10.1002/cphc.202300552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 11/22/2023]
Abstract
Remdesivir (RDV) emerged as an effective drug against the SARS-CoV-2 virus pandemic. One of the crucial steps in the mechanism of action of RDV is its incorporation into the growing RNA strand. RDV, an adenosine analogue, forms Watson-Crick (WC) type hydrogen bonds with uridine in the complementary strand and the strength of this interaction will control efficacy of RDV. While there is a plethora of structural and energetic information available about WC H-bonds in natural base pairs, the interaction of RDV with uridine has not been studied yet at the atomic level. In this article, we aim to bridge this gap, to understand RDV and its hydrogen bonding interactions, by employing density functional theory (DFT) at the M06-2X/cc-pVDZ level. The interaction energy, QTAIM analysis, NBO and SAPT2 are performed for RDV, adenosine, and their complex with uridine to gain insights into the nature of hydrogen bonding. The computations show that RDV has similar geometry, energetic, molecular orbitals, and aromaticity as adenosine, suggesting that RDV is an effective adenosine analogue. The important geometrical parameters, such as bond distances and red-shift in the stretching vibrational modes of adenosine, RDV and uridine identify two WC-type H-bonds. The relative strength of these two H-bonds is computed using QTAIM parameters and the computed hydrogen bond energy. Finally, the SAPT2 study is performed at the minima and at non-equilibrium base pair distances to understand the dominant intermolecular physical force. This study, based on a thorough analysis of a variety of computations, suggests that both adenosine and RDV have similar structure, energetic, and hydrogen bonding behaviour.
Collapse
Affiliation(s)
- Kamini Vishwakarma
- School of Advance Science and Languages, VIT Bhopal University, Kothrikalan, Sehore, Madhya, Pradesh, 466114, India
| | - Satyam Ravi
- School of Advance Science and Languages, VIT Bhopal University, Kothrikalan, Sehore, Madhya, Pradesh, 466114, India
| | - Sumit Mittal
- School of Advance Science and Languages, VIT Bhopal University, Kothrikalan, Sehore, Madhya, Pradesh, 466114, India
| |
Collapse
|
6
|
Huo B, Wang C, Hu X, Wang H, Zhu G, Zhu A, Li L. Peripheral substitution effects on unnatural base pairs: A case of brominated TPT3 to enhance replication fidelity. Bioorg Chem 2023; 140:106827. [PMID: 37683537 DOI: 10.1016/j.bioorg.2023.106827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
The high fidelity poses a central role in developing unnatural base pairs (UBPs), which means the high pairing capacity of unnatural bases with their partners, and low mispairing with all the natural bases. Different strategies have been used to develop higher-fidelity UBPs, including optimizing hydrophobic interaction forces between UBPs. Variant substituent groups are allowed to fine tune the hydrophobic forces of different UBPs' candidates. However, the modifications on the skeleton of TPT3 base are rare and the replication fidelity of TPT3-NaM remains hardly to improve so far. In this paper, we reasoned that modifying and/or expanding the aromatic surface by Bromo-substituents to slightly increase hydrophobicity of TPT3 might offer a way to increase the fidelity of this pair. Based on the hypothesis, we synthesized the bromine substituted TPT3, 2-bromo-TPT3 and 2, 4-dibromo-TPT3 as the new TPT3 analogs. While the enzyme reaction kinetic experiments showed that d2-bromo-TPT3-dNaM pair and d2, 4-dibromo-TPT3TP-dNaM pair had slightly less efficient incorporation and extension rates than that of dTPT3-dNaM pair, the assays did reveal that the mispairing of 2-bromo-TPT3 and 2, 4-dibromo-TPT3 with all the natural bases could dramatically decrease in contrast to TPT3. Their lower mispairing capacity promoted us to run polymerase chain amplification reactions, and a higher fidelity of d2-bromo-TPT3-dNaM pair could be obtained with 99.72 ± 0.01% of the in vitro replication fidelity than that of dTPT3-dNaM pair, 99.52 ± 0.09%. In addition, d2-bromo-TPT3-dNaM can also be effectively copied in E. coli cells, which showed the same replication fidelity as that of dTPT3-dNaM in the specific sequence, but a higher fidelity in the random sequence context.
Collapse
Affiliation(s)
- Bianbian Huo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, China Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chao Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, China Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoqi Hu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, China Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan Normal University, Xinxiang, Henan 453007, China
| | - Honglei Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, China Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gongming Zhu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, China Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan Normal University, Xinxiang, Henan 453007, China
| | - Anlian Zhu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lingjun Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, China Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan Normal University, Xinxiang, Henan 453007, China; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China; Pingyuan Laboratory, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
7
|
Negi I, Singh B, Singh Mahmi A, Sharma P. Structural Properties of Hachimoji Nucleic Acids and Their Building Blocks: Comparison of Genetic Systems with Four, Six and Eight Alphabets. Chemphyschem 2023; 24:e202200714. [PMID: 36315394 DOI: 10.1002/cphc.202200714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Indexed: 11/07/2022]
Abstract
Expansion of the genetic alphabet is an ambitious goal. A recent breakthrough has led to the eight-base (hachimoji) genetics having canonical and unnatural bases. However, very little is known on the molecular-level features that facilitate the candidature of unnatural bases as genetic alphabets. Here we amalgamated DFT calculations and MD simulations to analyse the properties of the constituents of hachimoji DNA and RNA. DFT reveals the dominant syn conformation for isolated unnatural deoxyribonucleosides and at the 5'-end of oligonucleotides, although an anti/syn mixture is predicted at the nonterminal and 3'-terminal positions. However, isolated ribonucleotides prefer an anti/syn mixture, but mostly prefer anti conformation at the nonterminal positions. Further, the canonical base pairing combinations reveals significant strength, which may facilitate replication of hachimoji DNA. We also identify noncanonical base pairs that can better tolerate the substitution of unnatural pairs in RNA. Stacking strengths of 51 dimers reveals higher average stacking stabilization of dimers of hachimoji bases than canonical bases, which provides clues for choosing energetically stable sequences. A total of 14.4 μs MD simulations reveal the influence of solvent on the properties of hachimoji oligonucleotides and point to the likely fidelity of replication of hachimoji DNA. Our results pinpoint the features that explain the experimentally observed stability of hachimoji DNA.
Collapse
Affiliation(s)
- Indu Negi
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Bimaldeep Singh
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Amanpreet Singh Mahmi
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.,Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, N9B 3P4, Canada
| |
Collapse
|
8
|
Abstract
To expand the existing genetic letters beyond the natural four nucleotides, such as G, C, A, and T, it is necessary to design robust nucleotides that can not only produce stable and unperturbed DNA but also function naturally in living cells. Although hydrophobic bases, such as d5SICS (2,6-dimethyl-2H-isoquiniline-1-thione) and dNaM (2-methoxy-3-methylnaphthalene) were shown to be replicated in bacterial cells, the d5SICS:dNaM base-pair was found to perturb the structure of the duplex DNA. Therefore, it is necessary to design nucleobases that can form base pairs like the natural G:C and A:T pairs. Here, a reliable dispersion-corrected density functional theory has been used to design several nucleobases that can produce three-hydrogen-bonded base pairs like the G:C pair. In doing so, the Watson-Crick faces of d5SICS and dNaM were modified by replacing the hydrophobic groups with hydrogen bond donors and acceptors. As dNaM contains an unnatural C-glycosidic bond (C-dNaM), it was also modified to contain the natural N-glycosidic bond (N-dNaM). This technique produced 91 new bases (N-d5SICS-X (X = 1-33), C-dNaM-X (X = 1-35), and N-dNaM-X (X = 1-23), where X is the different types of modifications applied to d5SICS and dNaM) and 259 base-pairs. Among these base pairs, 76 base pairs are found to be more stable than the G:C pair. Interestingly, the N-d5SICS-32:C-dNaM-32 and N-d5SICS-32:N-dNaM-20 pairs are found to be the most stable with binding energies of about -28.0 kcal/mol. The base-pair patterns of these pairs are also analogous to that of the G:C pair. Hence, it is proposed that N-d5SICS-32, C-dNaM-32, and N-dNaM-20 would act as efficient new genetic letters to produce stable and unperturbed artificial DNA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- N R Jena
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Khamaria, Jabalpur, India
| | - P Das
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Khamaria, Jabalpur, India
| |
Collapse
|
9
|
Biswas S, Dey S, Nath P, Nath S. Cipher Constrained Encoding for constraint optimization in Extended Nucleic Acid Memory. Comput Biol Chem 2022; 99:107696. [DOI: 10.1016/j.compbiolchem.2022.107696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/24/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022]
|
10
|
Pant P, Aggarwal L. Assessing the DNA structural integrity via selective annihilation of Watson-Crick hydrogen bonds: Insights from molecular dynamics simulations. Biophys Chem 2022; 282:106758. [DOI: 10.1016/j.bpc.2021.106758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/09/2021] [Accepted: 12/30/2021] [Indexed: 01/17/2023]
|
11
|
Wang H, Wang L, Ma N, Zhu W, Huo B, Zhu A, Li L. Access to Photostability-Enhanced Unnatural Base Pairs via Local Structural Modifications. ACS Synth Biol 2022; 11:334-342. [PMID: 34889587 DOI: 10.1021/acssynbio.1c00451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Completing the storage and retrieval of increased genetic information in vivo and producing therapeutic proteins have been achieved by the unnatural base pair dNaM-dTPT3. Up to now, some biological and chemical approaches are implemented to improve the semi-synthetic organism (SSO). However, the photosensitivity of this pair, suggested as a potential threat to the healthy growth of cells, is still a problem to solve. Hence, we designed and synthesized a panel of TPT3 analogues with the basic structural skeletons of TPT3 but modified thiophene rings at variant sites to improve the photostability of unnatural base pairs. A comprehensive screening strategy, including photosensitivity tests, kinetic experiments, and replication in vitro by PCR and in vivo by amplification, was implemented. A new pair, dNaM-dTAT1, which had almost equally high efficiency and fidelity with the dNaM-dTPT3 pair itself both in vivo and in vitro, was proven to be more photostable and thermostable and less toxic to E. coli cells. The discovery of dNaM-dTAT1 represents our first progress for the optimization of this type of bases toward more photostable properties; our data also suggest that less photosensitive unnatural base pairs will be beneficial to build a healthier cellular replication system.
Collapse
Affiliation(s)
- Honglei Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Luying Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Nana Ma
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wuyuan Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bianbian Huo
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Anlian Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lingjun Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
12
|
Altun A, Garcia-Ratés M, Neese F, Bistoni G. Unveiling the complex pattern of intermolecular interactions responsible for the stability of the DNA duplex. Chem Sci 2021; 12:12785-12793. [PMID: 34703565 PMCID: PMC8494058 DOI: 10.1039/d1sc03868k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/26/2021] [Indexed: 01/21/2023] Open
Abstract
Herein, we provide new insights into the intermolecular interactions responsible for the intrinsic stability of the duplex structure of a large portion of human B-DNA by using advanced quantum mechanical methods. Our results indicate that (i) the effect of non-neighboring bases on the inter-strand interaction is negligibly small, (ii) London dispersion effects are essential for the stability of the duplex structure, (iii) the largest contribution to the stability of the duplex structure is the Watson-Crick base pairing - consistent with previous computational investigations, (iv) the effect of stacking between adjacent bases is relatively small but still essential for the duplex structure stability and (v) there are no cooperativity effects between intra-strand stacking and inter-strand base pairing interactions. These results are consistent with atomic force microscope measurements and provide the first theoretical validation of nearest neighbor approaches for predicting thermodynamic data of arbitrary DNA sequences.
Collapse
Affiliation(s)
- Ahmet Altun
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 D-45470 Mülheim an der Ruhr Germany
| | - Miquel Garcia-Ratés
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 D-45470 Mülheim an der Ruhr Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 D-45470 Mülheim an der Ruhr Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 D-45470 Mülheim an der Ruhr Germany
| |
Collapse
|
13
|
Karadeema RJ, Morris SE, Lairson LL, Krishnamurthy R. Towards an understanding of the molecular mechanisms of variable unnatural base pair behavior-A biophysical analysis of dNaM-dTPT3. Chemistry 2021; 27:13991-13997. [PMID: 34382264 DOI: 10.1002/chem.202102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 11/08/2022]
Abstract
The series of unnatural base pairs (UBPs) developed by the Romesberg lab which pair via hydrophobic and packing interactions have been replicated, transcribed, and translated inside of a living organism. However, as to why these UBPs exhibit variable fidelity and efficiency when used in different contexts is not clear. In an effort to gain some insights, we investigated the thermal stability and pairing selectivity of the (d) NaM -(d) TPT3 UBP in 11nt duplexes via UV spectroscopy and the effects on helical structure via CD spectroscopy. We observed that while the duplexes containing a UBP are less stable than fully natural duplexes, they are generally more stable than duplexes containing natural mispairs. This work provides the first insights connecting the thermal stability of the (d) NaM -(d) TPT3 UBP to the molecular mechanisms for varying replication fidelity in different sequence contexts in DNA, asymmetrical transcription fidelity, and codon:anticodon interactions and can assist in future UBP development.
Collapse
Affiliation(s)
| | | | - Luke L Lairson
- The Scripps Research Institute, Chemistry, UNITED STATES
| | - Ramanarayanan Krishnamurthy
- The Scripps Research Institute, Chemistry snd The Skaggs Institute For Chemical Biology, 10550 North Torrey Pines Rd, MB-16, 92037, La Jolla, UNITED STATES
| |
Collapse
|
14
|
Ghosh P, Ghosh A, Ghosh D. Radiationless Decay Processes of an Unnatural DNA Base: Pyrrole 2-Carbaldehyde. J Phys Chem A 2021; 125:5556-5561. [PMID: 34133168 DOI: 10.1021/acs.jpca.1c03875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pyrrole-2-carbaldehyde (Pa) forms one of the unnatural nucleic acid bases, and as a base pair with 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds), it has been known to be stable in DNA. The Ds-Pa pair is stabilized in DNA via van der Waals' interaction and shape fitting. There are some studies on the origin of its stability and reactivity in the ground state. However, for a successful unnatural base pair, it needs to be stable not only in the ground state but also upon irradiation with UV-visible light. To understand the photoinduced reactivity, we investigate the excited-state properties of the Pa base and understand the energetically feasible photoprocesses that can occur upon excitation in the UV region. Two distinct pathways are obtained. One of the pathways involves an out-of-plane mode and has some similarities with the deactivation channels in the natural pyrimidine bases. On the other hand, the second pathway involves an excited-state proton transfer.
Collapse
Affiliation(s)
- Paulami Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Arpita Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
15
|
Beiranvand N, Freindorf M, Kraka E. Hydrogen Bonding in Natural and Unnatural Base Pairs-A Local Vibrational Mode Study. Molecules 2021; 26:2268. [PMID: 33919989 PMCID: PMC8071019 DOI: 10.3390/molecules26082268] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
In this work hydrogen bonding in a diverse set of 36 unnatural and the three natural Watson Crick base pairs adenine (A)-thymine (T), adenine (A)-uracil (U) and guanine (G)-cytosine (C) was assessed utilizing local vibrational force constants derived from the local mode analysis, originally introduced by Konkoli and Cremer as a unique bond strength measure based on vibrational spectroscopy. The local mode analysis was complemented by the topological analysis of the electronic density and the natural bond orbital analysis. The most interesting findings of our study are that (i) hydrogen bonding in Watson Crick base pairs is not exceptionally strong and (ii) the N-H⋯N is the most favorable hydrogen bond in both unnatural and natural base pairs while O-H⋯N/O bonds are the less favorable in unnatural base pairs and not found at all in natural base pairs. In addition, the important role of non-classical C-H⋯N/O bonds for the stabilization of base pairs was revealed, especially the role of C-H⋯O bonds in Watson Crick base pairs. Hydrogen bonding in Watson Crick base pairs modeled in the DNA via a QM/MM approach showed that the DNA environment increases the strength of the central N-H⋯N bond and the C-H⋯O bonds, and at the same time decreases the strength of the N-H⋯O bond. However, the general trends observed in the gas phase calculations remain unchanged. The new methodology presented and tested in this work provides the bioengineering community with an efficient design tool to assess and predict the type and strength of hydrogen bonding in artificial base pairs.
Collapse
Affiliation(s)
| | | | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, TX 75275-0314, USA; (N.B.); (M.F.)
| |
Collapse
|
16
|
Sharma KD, Kathuria P, Wetmore SD, Sharma P. Can modified DNA base pairs with chalcogen bonding expand the genetic alphabet? A combined quantum chemical and molecular dynamics simulation study. Phys Chem Chem Phys 2020; 22:23754-23765. [PMID: 33063082 DOI: 10.1039/d0cp04921b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A comprehensive (DFT and MD) computational study is presented with the goal to design and analyze model chalcogen-bonded modified nucleobase pairs that replace one (i.e., AXY:T, G:CXY, GXY:C) or two (GXY:CX'Y', X/X' = S, Se and Y/Y' = F, Cl, Br) Watson-Crick (WC) hydrogen bonds of the canonical A:T or G:C pair with chalcogen bond(s). DFT calculations on 18 base pair combinations that replace one WC hydrogen bond with a chalcogen bond reveal that the bases favorably interact in the gas phase (binding strengths up to -140 kJ mol-1) and water (up to -85 kJ mol-1). Although the remaining hydrogen bond(s) exhibits similar characteristics to those in the canonical base pairs, the structural features of the (Y-XO) chalcogen bond(s) change significantly with the identity of X and Y. The 36 doubly-substituted (GXY:CX'Y') base pairs have structural deviations from canonical G:C similar to those of the singly-substituted modifications (G:CXY or GXY:C). Furthermore, despite the replacement of two strong hydrogen bonds with chalcogen bonds, some GXY:CX'Y' pairs possess comparable binding energies (up to -132 kJ mol-1 in the gas phase and up to -92 kJ mol-1 in water) to the most stable G:CXY or GXY:C pairs, as well as canonical G:C. More importantly, G:C-modified pairs containing X = Se (high polarizability) and Y = F (high electronegativity) are the most stable, with comparable or slightly larger (by up to 13 kJ mol-1) binding energies than G:C. Further characterization of the chalcogen bonding in all modified base pairs (AIM, NBO and NCI analyses) reveals that the differences in the binding energies of modified base pairs are mainly dictated by the differences in the strengths of their chalcogen bonds. Finally, MD simulations on DNA oligonucleotides containing the most stable chalcogen-bonded base pair from each of the four classifications (AXY:T, G:CXY, GXY:C and GXY:CX'Y') reveal that the singly-modified G:C pairs best retain the local helical structure and pairing stability to a greater extent than the modified A:T pair. Overall, our study identifies two (G:CSeF and GSeF:C) promising pairs that retain chalcogen bonding in DNA and should be synthesized and further explored in terms of their potential to expand the genetic alphabet.
Collapse
Affiliation(s)
- Karan Deep Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India. and Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Preetleen Kathuria
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, Alberta T1K 3M4, Canada.
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
17
|
Marx A, Betz K. The Structural Basis for Processing of Unnatural Base Pairs by DNA Polymerases. Chemistry 2020; 26:3446-3463. [PMID: 31544987 PMCID: PMC7155079 DOI: 10.1002/chem.201903525] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Indexed: 12/16/2022]
Abstract
Unnatural base pairs (UBPs) greatly increase the diversity of DNA and RNA, furthering their broad range of molecular biological and biotechnological approaches. Different candidates have been developed whereby alternative hydrogen-bonding patterns and hydrophobic and packing interactions have turned out to be the most promising base-pairing concepts to date. The key in many applications is the highly efficient and selective acceptance of artificial base pairs by DNA polymerases, which enables amplification of the modified DNA. In this Review, computational as well as experimental studies that were performed to characterize the pairing behavior of UBPs in free duplex DNA or bound to the active site of KlenTaq DNA polymerase are highlighted. The structural studies, on the one hand, elucidate how base pairs lacking hydrogen bonds are accepted by these enzymes and, on the other hand, highlight the influence of one or several consecutive UBPs on the structure of a DNA double helix. Understanding these concepts facilitates optimization of future UBPs for the manifold fields of applications.
Collapse
Affiliation(s)
- Andreas Marx
- Department of ChemistryKonstanz Research School Chemical BiologyUniversity of KonstanzUniversitätsstrasse 1078464KonstanzGermany
| | - Karin Betz
- Department of ChemistryKonstanz Research School Chemical BiologyUniversity of KonstanzUniversitätsstrasse 1078464KonstanzGermany
| |
Collapse
|
18
|
Mukhopadhyay TK, Datta A. Screening two dimensional materials for the transportation and delivery of diverse genetic materials. NANOSCALE 2020; 12:703-719. [PMID: 31829380 DOI: 10.1039/c9nr05930j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In spite of several reports of graphene and other 2D materials concerning their capacity for biomolecular adsorption and delivery, recent toxicity evaluations found them to be nanotoxic toward different biomolecules, especially nucleic acids. Therefore, there is urgent demand for the synthesis of 2D materials exhibiting biocompatible and non-nanotoxic features. In this article, employing classical molecular dynamics simulations, we provide a benchmarking of h2D-C2N, graphene and hexagonal boron nitride (h-BN) toward the adsorption, preservation, targeting and delivery of various classes of nucleic acids namely single stranded DNA, double stranded natural as well as unnatural base substituted DNA and two different types of human telomeric guanine quadruplexes, all comprising different secondary structures. Our simulations reveal that, while h2D-C2N preserves the structures of most of the nucleic acids, graphene and h-BN disrupt them through strong π-π stacking with aromatic nucleobases. Interestingly, for the first time we identified a 'quartet-by-quartet' disruption mechanism of guanine quadruplexes, but only on graphene and h-BN. The lateral diffusion of adsorbed nucleic acids over C2N is restricted unlike that over both graphene and h-BN, thereby increasing the targeting efficacy for C2N. Modeling of the delivery phenomena suggests orders of magnitude longer release times from graphene and h-BN compared to C2N, thereby demonstrating the preferential suitability of C2N for all the hierarchical steps of nucleic acid transportation.
Collapse
Affiliation(s)
- Titas Kumar Mukhopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| | | |
Collapse
|
19
|
Galindo-Murillo R, Barroso-Flores J. Hydrophobic unnatural base pairs show a Watson-Crick pairing in micro-second molecular dynamics simulations. J Biomol Struct Dyn 2019; 38:4098-4106. [PMID: 31542995 DOI: 10.1080/07391102.2019.1671898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two unnatural hydrophobic nucleotides, d5SICS (2,6-dimethyl-2H-isoquiniline-1-thione) and dNaM (2-methoxy-3-methylnaphthalene), were previously replicated in vivo by a modified E. coli strand, however, a consistent structure for their pairing in terms of specific and selective directional interactions remains elusive, as data from spectroscopy experiments and simulations are inconsistent. The proposed d5SICS-dNaM pairing has been suggested to be a stacked configuration as suggested by NMR data; simulations have failed to reproduce this configuration and a Watson-Crick like pairing is observed. Previously, we focused on reproducing the d5SICS-dNaM Unnatural Base Pair (UBP) paring using an older (bsc0) AMBER force field, which was not able to correctly reproduce the experimental data. We present our efforts to reproduce the experimental pairing using the current version of the AMBER DNA force fields (OL15 and bsc1), two water models (OPC and TIP3P) and external electrostatic stabilization by Mg2+ ions. Opposite to previously reported simulations, a Watson-Crick-like pairing with no hydrogen bonds persists throughout all our results. Despite our efforts to replicate the reported stacked conformation, we cannot confirm its plausibility nor obtain a consistent structure that is independent of the neighboring nucleotides. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rodrigo Galindo-Murillo
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Joaquín Barroso-Flores
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Estado de México, C.P., México.,Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| |
Collapse
|
20
|
Feldman AW, Dien VT, Karadeema RJ, Fischer EC, You Y, Anderson BA, Krishnamurthy R, Chen JS, Li L, Romesberg FE. Optimization of Replication, Transcription, and Translation in a Semi-Synthetic Organism. J Am Chem Soc 2019; 141:10644-10653. [PMID: 31241334 DOI: 10.1021/jacs.9b02075] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Previously, we reported the creation of a semi-synthetic organism (SSO) that stores and retrieves increased information by virtue of stably maintaining an unnatural base pair (UBP) in its DNA, transcribing the corresponding unnatural nucleotides into the codons and anticodons of mRNAs and tRNAs, and then using them to produce proteins containing noncanonical amino acids (ncAAs). Here we report a systematic extension of the effort to optimize the SSO by exploring a variety of deoxy- and ribonucleotide analogues. Importantly, this includes the first in vivo structure-activity relationship (SAR) analysis of unnatural ribonucleoside triphosphates. Similarities and differences between how DNA and RNA polymerases recognize the unnatural nucleotides were observed, and remarkably, we found that a wide variety of unnatural ribonucleotides can be efficiently transcribed into RNA and then productively and selectively paired at the ribosome to mediate the synthesis of proteins with ncAAs. The results extend previous studies, demonstrating that nucleotides bearing no significant structural or functional homology to the natural nucleotides can be efficiently and selectively paired during replication, to include each step of the entire process of information storage and retrieval. From a practical perspective, the results identify the most optimal UBP for replication and transcription, as well as the most optimal unnatural ribonucleoside triphosphates for transcription and translation. The optimized SSO is now, for the first time, able to efficiently produce proteins containing multiple, proximal ncAAs.
Collapse
Affiliation(s)
- Aaron W Feldman
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Vivian T Dien
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Rebekah J Karadeema
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Emil C Fischer
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Yanbo You
- School of Chemistry and Chemical Engineering , Henan Normal University , Henan 453007 , P. R. China
| | - Brooke A Anderson
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Jason S Chen
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Lingjun Li
- School of Chemistry and Chemical Engineering , Henan Normal University , Henan 453007 , P. R. China
| | - Floyd E Romesberg
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
21
|
Li C, Guo W, Zhou P, Tang Z. The effects of the heteroatom and position on excited-state intramolecular proton transfer of new hydroxyphenyl benzoxazole derivatives: a time-dependent density functional theory study. Org Chem Front 2019. [DOI: 10.1039/c9qo00295b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The effects of the heteroatom and position on excited-state intramolecular proton transfer (ESIPT) of 2-[4′-(N-4,6-dichloro-1,3,5-triazi-n-2-yl)2′hydroxyphenyl]benzoxazole (4THBO) have been investigated via time-dependent density functional theory studies.
Collapse
Affiliation(s)
- Changming Li
- School of Electrical Engineering
- University of South China
- Hengyang 421001
- China
- State Key Lab of Molecular Reaction Dynamics
| | - Wei Guo
- School of Electrical Engineering
- University of South China
- Hengyang 421001
- China
| | - Panwang Zhou
- Institute of Molecular Sciences and Engineering
- Shandong University
- Qingdao 266235
- P. R. China
| | - Zhe Tang
- Institute of Molecular Sciences and Engineering
- Shandong University
- Qingdao 266235
- P. R. China
| |
Collapse
|
22
|
Dien VT, Holcomb M, Feldman AW, Fischer EC, Dwyer TJ, Romesberg FE. Progress Toward a Semi-Synthetic Organism with an Unrestricted Expanded Genetic Alphabet. J Am Chem Soc 2018; 140:16115-16123. [PMID: 30418780 DOI: 10.1021/jacs.8b08416] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have developed a family of unnatural base pairs (UBPs), exemplified by the pair formed between dNaM and dTPT3, for which pairing is mediated not by complementary hydrogen bonding but by hydrophobic and packing forces. These UBPs enabled the creation of the first semisynthetic organisms (SSOs) that store increased genetic information and use it to produce proteins containing noncanonical amino acids. However, retention of the UBPs was poor in some sequence contexts. Here, to optimize the SSO, we synthesize two novel benzothiophene-based dNaM analogs, dPTMO and dMTMO, and characterize the corresponding UBPs, dPTMO-dTPT3 and dMTMO-dTPT3. We demonstrate that these UBPs perform similarly to, or slightly worse than, dNaM-dTPT3 in vitro. However, in the in vivo environment of an SSO, retention of dMTMO-dTPT3, and especially dPTMO-dTPT3, is significantly higher than that of dNaM-dTPT3. This more optimal in vivo retention results from better replication, as opposed to more efficient import of the requisite unnatural nucleoside triphosphates. Modeling studies suggest that the more optimal replication results from specific internucleobase interactions mediated by the thiophene sulfur atoms. Finally, we show that dMTMO and dPTMO efficiently template the transcription of RNA containing TPT3 and that their improved retention in DNA results in more efficient production of proteins with noncanonical amino acids. This is the first instance of using performance within the SSO as part of the UBP evaluation and optimization process. From a general perspective, the results demonstrate the importance of evaluating synthetic biology "parts" in their in vivo context and further demonstrate the ability of hydrophobic and packing interactions to replace the complementary hydrogen bonding that underlies the replication of natural base pairs. From a more practical perspective, the identification of dMTMO-dTPT3 and especially dPTMO-dTPT3 represents significant progress toward the development of SSOs with an unrestricted ability to store and retrieve increased information.
Collapse
Affiliation(s)
- Vivian T Dien
- Department of Chemistry , The Scripps Research Institute , La Jolla , California 92037 United States
| | - Matthew Holcomb
- Department of Chemistry , The Scripps Research Institute , La Jolla , California 92037 United States
| | - Aaron W Feldman
- Department of Chemistry , The Scripps Research Institute , La Jolla , California 92037 United States
| | - Emil C Fischer
- Department of Chemistry , The Scripps Research Institute , La Jolla , California 92037 United States
| | - Tammy J Dwyer
- Department of Chemistry and Biochemistry , University of San Diego , San Diego , California 92110 , United States
| | - Floyd E Romesberg
- Department of Chemistry , The Scripps Research Institute , La Jolla , California 92037 United States
| |
Collapse
|
23
|
Srinivasadesikan V, Chen YC, Lee SL. On the misincorporation of nucleotides opposite mutagenic cyclic 1,N 2-propanoguanine: A computational investigation. J Mol Graph Model 2018; 85:270-280. [PMID: 30253282 DOI: 10.1016/j.jmgm.2018.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 11/30/2022]
Abstract
The misincorporation properties of exocyclic DNA adduct, cyclic 1,N2-propanoguanine with nucleobases have been investigated using DFT and DFT-D methods. Number of possible and stable mispairing conformations of cyclic 1,N2-propanoguanine with A,T,G and C have been considered for our investigation. The single point energy calculations have been carried out at the M06/6-311++G**, ωB97XD/6-311++G** and MP2/6-311++G** levels on corresponding optimized geometries. The reaction enthalpy values were employed at the M06/6-31 + G* and ωB97XD/6-31 + G* levels. The energies have been compared among the cyclic 1,N2-propanoguanine adduct with nucleobases to find the most stable conformer. The CPCM model was utilized on account of solvent phase and overall polarizability. The computed binding energies follow the order as CPr-Gua-G(2)(-23.2 kcal/mol) > CPr-Gua-C(1) (-16.1 kcal/mol) > CPr-Gua-A(2)(-10.6 kcal/mol) > CPr-Gua-T(2)(-9.6 kcal/mol) in the gas phase at M06 level, which indicates the guanine and cytosine are favorable for mispairing with the cyclic 1,N2-propanoguanine adduct. The obtained results using computational tools are in good agreement with the experimental observation.
Collapse
Affiliation(s)
- V Srinivasadesikan
- Department of Chemistry and Biochemistry, National Chung-Cheng University, Chia-Yi, 621, Taiwan; Division of Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, 522 213, Andhra Pradesh, India
| | - Ya-Chi Chen
- Department of Chemistry and Biochemistry, National Chung-Cheng University, Chia-Yi, 621, Taiwan
| | - Shyi-Long Lee
- Department of Chemistry and Biochemistry, National Chung-Cheng University, Chia-Yi, 621, Taiwan.
| |
Collapse
|
24
|
Negi I, Kathuria P, Sharma P, Wetmore SD. How do hydrophobic nucleobases differ from natural DNA nucleobases? Comparison of structural features and duplex properties from QM calculations and MD simulations. Phys Chem Chem Phys 2018; 19:16365-16374. [PMID: 28657627 DOI: 10.1039/c7cp02576a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Computational (DFT and MD simulation) methods are employed to systematically characterize the structural and energetic properties of five hydrophobic nucleobases (FEMO, MMO2, NaM, 5SICS and TPT3) that constitute four unnatural base pairs (FEMO:5SICS, MMO2:5SICS, NaM:5SICS and TPT3:NaM). These hydrophobic bases have been recently shown to be replicated when present between natural bases in DNA duplexes, with the highest replication fidelity and efficiency occuring for the TPT3:NaM pair. Our QM calculations suggest that the preferred (anti) glycosidic orientations of nucleosides containing hydrophobic bases are similar to the natural DNA nucleosides despite differences in their chemical structures. However, due to the inability to form interbase hydrogen bonds, hydrophobic base pairs intrinsically prefer nonplanar, distorted geometries, many of which are stabilized through π-π stacking interactions. Furthermore, the intrinsic stacking potential between a hydrophobic and a natural base is similar to that between two natural bases, indicating that the strength of stacking interactions in DNA duplexes containing hydrophobic bases is likely comparable to natural DNA. However, in contrast to the isolated base-pair geometries, our MD simulations suggest that the hydrophobic base pairs adopt variable geometries within DNA, which range from stacked (5SICS:FEMO) to nearly planar (5SICS:NaM and SICS:MMO2) to planar (TPT3:NaM). As a result, the duplex structural features at the site of modification depend on the identity of the hydrophobic base pair, where the TPT3:NaM pair causes the least structural changes compared to natural DNA. Overall, the structural insight obtained from our calculations on DNA containing hydrophobic base pairs explains the experimentally-observed higher fidelity and efficiency during replication of TPT3:NaM compared to other hydrophobic nucleobase pairs. By providing valuable structural information that explains the intrinsic and duplex properties of this class of unnatural nucleobases, the present work may aid the future design of improved hydrophobic analogues.
Collapse
Affiliation(s)
- Indu Negi
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| | | | | | | |
Collapse
|
25
|
Galindo-Murillo R, Barroso-Flores J. Structural and dynamical instability of DNA caused by high occurrence of d5SICS and dNaM unnatural nucleotides. Phys Chem Chem Phys 2018; 19:10571-10580. [PMID: 28394373 DOI: 10.1039/c7cp01477e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In vivo inclusion of unnatural base pairs (UBPs) into functional DNA was recently reported for compounds 2,6-dimethyl-2H-isoquiniline-1-thione (d5SICS, X) and 2-methoxy-3-methylnaphthalene (dNaM, Y) in a modified E. coli strand, for which high-fidelity replication was observed. Yet, little is known about possible genetic consequences they have in largely substituted DNA. Using a converged microsecond long molecular dynamics (MD) simulation of the sequences 5'-GCGCAAXTTGCGC-3' and 5'-GCGCXAXTXGCGC-3', where X represents the UBP, we show that in the system with only a single XY UBP pair present, the global RMS deviation from canonical B-DNA in our control simulations is ∼3 Å and a fully converged ensemble is achieved within 2 µs. With three UBPs, deviation increases to ∼5 Å and convergence is not achieved within 10 µs of sampling time. With five UBPs, no convergence is observed and the double helix collapses into a globular structure. A fully optimized structure of the trimer d(GXC) was obtained using the density functional theory method B97D/cc-pVTZ and resulted in an RMSD value of ∼2 Å when compared to the most populated structure obtained from the MD simulations. Their calculated interaction energy is -3.7 kcal mol-1. It is thus unlikely that d5SICS and dNaM could be useful as tools in DNA manipulation. This theoretical methodology can be used in the de novo design of UBPs.
Collapse
Affiliation(s)
- Rodrigo Galindo-Murillo
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, 2000 East 30 South Skaggs 201, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
26
|
Otsuka T, Sumita M, Izawa H, Morihashi K. Theoretical study on photo-induced processes of 1-methyl-3-(N-(1,8-naphthalimidyl)ethyl)imidazolium halide species: an application of constrained density functional theory. Phys Chem Chem Phys 2018; 20:3911-3917. [PMID: 29242878 DOI: 10.1039/c7cp07877c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
1-Methyl-3-(N-(1,8-naphthalimidyl)ethyl)imidazolium (MNEI) has potential as a versatile sensor that can measure the electronegativity of anions based on the fluorescence intensity upon irradiation. To clarify the factors that determine the fluorescence intensity, constrained density functional theory (CDFT) was applied to explore the electron transfer (ET) states of MNEI halide species (MNEI-X; X = F, Cl, Br, I). According to the CDFT potential energy surface, intra-molecular ET (SM1) states on MNEI are responsible for the intensity of absorption and fluorescence spectra. However, inter-molecular ET (SET) states between MNEI and X are certainly responsible for fluorescence quenching. Hence, the energetic difference between the SM1 state and the SET state (ΔEM1_ET) is a crucial factor that determines the fluorescence intensity in the spectra of MNEI-X complexes. ΔEM1_ET decreases as the electronegativity of X decreases (i.e., F > Cl > Br > I). This explains the fluorescence intensity of MNEI-X.
Collapse
Affiliation(s)
- Takao Otsuka
- Laboratory for Computational Molecular Design, Computational Biology Research Core, RIKEN Quantitative Biology Center (QBiC), QBiC Building B, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan.
| | | | | | | |
Collapse
|
27
|
Wang W, Sheng X, Zhang S, Huang F, Sun C, Liu J, Chen D. Theoretical characterization of the conformational features of unnatural oligonucleotides containing a six nucleotide genetic alphabet. Phys Chem Chem Phys 2018; 18:28492-28501. [PMID: 27711557 DOI: 10.1039/c6cp05594j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The addition of the unnatural P:Z base pair to the four naturally occurring DNA bases expands the genetic alphabet and yields an artificially expanded genetic information system (AEGIS). Herein, the structural feature of oligonucleotides containing a novel unnatural P:Z base pair is characterized using both molecular dynamics and quantum chemistry. The results show that the incorporation of the novel artificial base pair (P:Z) preserves the global conformational feature of duplex DNA except for some local structures. The Z-nitro group imparts new properties to the groove width, which widens the major groove. The unnatural oligonucleotides containing mismatched base pairs exhibit low stability. This ensures efficient and high-fidelity replication. In general, the incorporation of the P:Z pair strengthens the stability of the corresponding DNA duplex. The calculated results also show that the thermostability originates from both hydrogen interaction and stacking interaction. The Z-nitro group plays an important role in enhancing the stability of the H-bonds and stacking strength of the P:Z pair. Overall, the present results provide theoretical insights in the exploration of artificially expanded genetic information systems.
Collapse
Affiliation(s)
- Wenjuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xiehuang Sheng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Shaolong Zhang
- College of Physics and Electronics, Shandong Normal University, Jinan 250014, P. R. China
| | - Fang Huang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Chuanzhi Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Jianbiao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Dezhan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
28
|
Hao J, Yang Y. Exploring the ESIPT dynamical processes of two novel chromophores: symmetrical structure CHC and asymmetric structure CHN. Org Chem Front 2018. [DOI: 10.1039/c7qo01127j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The detailed ESIPT dynamical processes of CHC (symmetrical structure) and CHN (asymmetric structure) chromophores were revealed and compared using the TDDFT method at the B3LYP/6-31+G(d,p) level.
Collapse
Affiliation(s)
- Jiaojiao Hao
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Yang Yang
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
29
|
Jahiruddin S, Mandal N, Datta A. Structure and Electronic Properties of Unnatural Base Pairs: The Role of Dispersion Interactions. Chemphyschem 2017; 19:67-74. [PMID: 29139595 DOI: 10.1002/cphc.201700997] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Indexed: 12/18/2022]
Abstract
Recent reports of the successful incorporation of unnatural base pairs (UBPs), such as d5SICS-dNaM, in the gene sequence and replication with DNA is an important milestone in synthetic biology. Followed by this, several other UBPs, such as dTPT3-dNaM, dTPT3-dFIMO, dTPT3-IMO, dTPT3-FEMO, FTPT3-NaM, FTPT3-FIMO, FTPT3-IMO, and FTPT3-FEMO, have demonstrated similar or better retention and fidelity inside cells. Of these base pairs, dNaM-dTPT3 has been optimized to be a better fit inside a pAIO plasmid. Based on both implicit and explicit dispersion-corrected density functional theory (DFT) calculations, we show that although this set of UBPs is significantly diverse in elemental and structural configuration, the members do share a common trait of favoring a slipped parallel stacked dimer arrangement. Unlike the natural bases (A, T, G, C, and U), this set of UBPs has a negligible affinity for a Watson-Crick (WC)-type planar structure because they are invariably more stable within slipped parallel stacked orientations. We also observed that all the UBPs have either similar or higher binding energies with the natural bases in similar stacked orientations. When arranged between two natural base pairs, the UBPs exhibited a binding energy similar to that of three-base sequences of natural bases. Our computational data show that the most promising base pairs are 5SICS-NaM, TPT3-NaM, and TPT3-FEMO. These results are consistent with recent progress on experimental research into UBPs along with our previous calculations on the d5SICS-dNaM pair and, therefore, strengthen the hypothesis that hydrogen bonding might not be absolutely essential and that interbase stacking dispersion interactions play a key role in the stabilization of genetic materials.
Collapse
Affiliation(s)
- Sk Jahiruddin
- Department of Physics, Sister Nibedita Government General Degree College for Girls, 20B Judges Court Road, Hastings House, Kolkata, 700027, West Bengal, India
| | - Nilangshu Mandal
- Department of Spectroscopy, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Ayan Datta
- Department of Spectroscopy, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| |
Collapse
|
30
|
Bhattacharyya K, Datta A. Visible-Light-Mediated Excited State Relaxation in Semi-Synthetic Genetic Alphabet: d5SICS and dNaM. Chemistry 2017; 23:11494-11498. [PMID: 28675549 DOI: 10.1002/chem.201702583] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 12/17/2022]
Abstract
The excited state dynamics of an unnatural base pair (UBP) d5SICS/dNaM were investigated by accurate ab-initio calculations. Time-dependent density functional and high-level multireference calculations (MS-CASPT2) were performed to elucidate the excitation of this UBP and its excited state relaxation mechanism. After excitation to the bright state S2 (ππ*), it decays to the S1 state and then undergoes efficient intersystem crossing to the triplet manifold. The presence of sulfur atom in d5SICS leads to strong spin-orbit coupling (SOC) and a small energy gap that facilitates intersystem crossing from S1 (ns π*) to T2 (ππ*) followed by internal conversion to T1 state. Similarly in dNaM, the deactivation pathway follows analogous trends. CASPT2 calculations suggest that the S1 (ππ*) state is a dark state below the accessible S2 (ππ*) bright state. During the ultrafast deactivation, it exhibits bond length inversion. From S1 state, significant SOC leads the population transfer to T3 due to a smaller energy gap. Henceforth, fast internal conversion occurs from T3 to T2 followed by T1 . From time-dependent trajectory surface hopping dynamics, it is found that excited state relaxation occurs on a sub-picosecond timescale in d5SICS and dNaM. Our findings strongly suggest that there is enough energy available in triplet state of UBP to generate reactive oxygen species and induce phototoxicity with respect to cellular DNA.
Collapse
Affiliation(s)
- Kalishankar Bhattacharyya
- Department of Spectroscopy, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, 700032, Kolkata, West Bengal, India
| | - Ayan Datta
- Department of Spectroscopy, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, 700032, Kolkata, West Bengal, India
| |
Collapse
|
31
|
|
32
|
Han P, He Y, Chen C, Yu H, Liu F, Yang H, Ma Y, Zheng Y. Study on Synergistic Mechanism of Inhibitor Mixture Based on Electron Transfer Behavior. Sci Rep 2016; 6:33252. [PMID: 27671332 PMCID: PMC5037402 DOI: 10.1038/srep33252] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/22/2016] [Indexed: 12/22/2022] Open
Abstract
Mixing is an important method to improve the performance of surfactants due to their synergistic effect. The changes in bonding interaction and adsorption structure of IM and OP molecules before and after co-adsorbed on Fe(001) surface is calculated by DFTB+ method. It is found that mixture enable the inhibitor molecules with higher EHOMO donate more electrons while the inhibitor molecules with lower ELUMO accept more electrons, which strengthens the bonding interaction of both inhibitor agent and inhibitor additive with metal surface. Meanwhile, water molecules in the compact layer of double electric layer are repulsed and the charge transfer resistance during the corrosion process increases. Accordingly, the correlation between the frontier orbital (EHOMO and ELUMO of inhibitor molecules and the Fermi level of metal) and inhibition efficiency is determined. Finally, we propose a frontier orbital matching principle for the synergistic effect of inhibitors, which is verified by electrochemical experiments. This frontier orbital matching principle provides an effective quantum chemistry calculation method for the optimal selection of inhibitor mixture.
Collapse
Affiliation(s)
- Peng Han
- Department of Materials Science and Engineering, Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/gas Facilities, China University of Petroleum (Beijing), Changping District, Fuxue Road 18, Beijing 102249, P. R. China
| | - Yang He
- Department of Materials Science and Engineering, Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/gas Facilities, China University of Petroleum (Beijing), Changping District, Fuxue Road 18, Beijing 102249, P. R. China
| | - Changfeng Chen
- Department of Materials Science and Engineering, Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/gas Facilities, China University of Petroleum (Beijing), Changping District, Fuxue Road 18, Beijing 102249, P. R. China
| | - Haobo Yu
- Department of Materials Science and Engineering, Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/gas Facilities, China University of Petroleum (Beijing), Changping District, Fuxue Road 18, Beijing 102249, P. R. China
| | - Feng Liu
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Hong Yang
- School of Mechanical and Chemical Engineering, the University of Western Australia, Crawley, WA 6009, Australia
| | - Yue Ma
- College of Science, China University of Petroleum (Beijing), Changping District, Fuxue Road 18, Beijing 102249, P. R. China
| | - Yanjun Zheng
- Department of Materials Science and Engineering, Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/gas Facilities, China University of Petroleum (Beijing), Changping District, Fuxue Road 18, Beijing 102249, P. R. China
| |
Collapse
|
33
|
Gu C, Zhang J, Yang YI, Chen X, Ge H, Sun Y, Su X, Yang L, Xie S, Gao YQ. DNA Structural Correlation in Short and Long Ranges. J Phys Chem B 2015; 119:13980-90. [PMID: 26439165 DOI: 10.1021/acs.jpcb.5b06217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent single-molecule measurements have revealed the DNA allostery in protein/DNA binding. MD simulations showed that this allosteric effect is associated with the deformation properties of DNA. In this study, we used MD simulations to further investigate the mechanism of DNA structural correlation, its dependence on DNA sequence, and the chemical modification of the bases. Besides a random sequence, poly d(AT) and poly d(GC) are also used as simpler model systems, which show the different bending and twisting flexibilities. The base-stacking interactions and the methyl group on the 5-carbon site of thymine causes local structures and flexibility to be very different for the two model systems, which further lead to obviously different tendencies of the conformational deformations, including the long-range allosteric effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sunney Xie
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | | |
Collapse
|
34
|
Das S, Samanta PK, Pati SK. Watson–Crick base pairing, electronic and photophysical properties of triazole modified adenine analogues: a computational study. NEW J CHEM 2015. [DOI: 10.1039/c5nj01566a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Triazole adenine nucleobase analogues show fluorescence in the UV-Vis region and form Watson–Crick base pairing with thymine nucleobases.
Collapse
Affiliation(s)
- Shubhajit Das
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore 560064
- India
| | - Pralok K Samanta
- Theoretical Sciences Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore 560064
- India
| | - Swapan K Pati
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore 560064
- India
- Theoretical Sciences Unit
| |
Collapse
|