1
|
Jiang T, Thielges MC, Feng C. Emerging approaches to investigating functional protein dynamics in modular redox enzymes: Nitric oxide synthase as a model system. J Biol Chem 2025; 301:108282. [PMID: 39929300 PMCID: PMC11929083 DOI: 10.1016/j.jbc.2025.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
Approximately 80% of eukaryotic and 65% of prokaryotic proteins are composed of multiple folding units (i.e., domains) connected by flexible linkers. These dynamic protein architectures enable diverse, essential functions such as electron transfer, respiration, and biosynthesis. This review critically assesses recent advancements in methods for studying protein dynamics, with a particular focus on modular, multidomain nitric oxide synthase (NOS) enzymes. Moving beyond traditional static "snapshots" of protein structures, current research emphasizes the dynamic nature of proteins, viewing them as flexible architectures modulated by conformational changes and interactions. In this context, the review discusses key developments in the integration of quantitative crosslinking mass spectrometry (qXL MS) with AlphaFold 2 predictions, which provides a powerful approach to disentangling NOS structural dynamics and understanding their modulation by external regulatory cues. Additionally, advances in site-specific infrared (IR) spectroscopy offer exciting potential in providing rich details about the conformational dynamics of NOSs in docked states. Moreover, optimization of genetic code expansion machinery enables the generation of genuine phosphorylated NOS enzymes, paving the way for detailed biophysical and functional analyses of phosphorylation's role in shaping NOS activity and structural flexibility; notably, this approach also empowers site-specific IR probe labeling with cyano groups. By embracing and leveraging AI-driven tools like AlphaFold 2 for structural and conformational modeling, alongside solution-based biophysical methods such as qXL MS and site-specific IR spectroscopy, researchers will gain integrative insights into functional protein dynamics. Collectively, these breakthroughs highlight the transformative potential of modern approaches in driving fundamental biological chemistry research.
Collapse
Affiliation(s)
- Ting Jiang
- College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, USA
| | - Megan C Thielges
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, USA.
| |
Collapse
|
2
|
Ali N, Singh S, Sengupta C, Paul S, Thielges MC. Facile Generation of Cyanoselenocysteine as a Vibrational Label for Measuring Protein Dynamics on Longer Time Scales by 2D IR Spectroscopy. Anal Chem 2025; 97:1673-1680. [PMID: 39791917 PMCID: PMC11929970 DOI: 10.1021/acs.analchem.4c04689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Two-dimensional infrared (2D IR) spectroscopy is a powerful technique for measuring molecular heterogeneity and dynamics with a high spatiotemporal resolution. The methods can be applied to characterize specific residues of proteins by incorporating frequency-resolved vibrational labels. However, the time scale of dynamics that 2D IR spectroscopy can measure is limited by the vibrational label's excited-state lifetime due to the decay of 2D IR absorption bands. To extend this time scale, vibrational labels with longer lifetimes are sought. An effective approach to inhibiting intramolecular energy relaxation is to isolate the vibration from the rest of the molecule by inserting a heavy atom bridge. Although this strategy has been demonstrated through the generation of functionalized amino acids, a straightforward route to their selective incorporation into proteins is often unclear. A facile approach for the attachment of a cyano group at cysteine to generate a thiocyanate has contributed to its adoption as a vibrational label of proteins. We demonstrate that an analogous route can be used for introducing cyanoselenocysteine to generate a selenocyanate vibrational label containing a heavier bridge atom. We confirm by infrared pump-probe and 2D IR spectroscopy longer vibrational lifetimes of 100-250 ps, depending on the solvent, which enable the collection of 2D IR spectra to measure frequency dynamics on longer time scales.
Collapse
Affiliation(s)
- Noor Ali
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Swapnil Singh
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Chaitrali Sengupta
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Shashwati Paul
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Megan C Thielges
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
3
|
Sahil M, Singh T, Ghosh S, Mondal J. 3site Multisubstrate-Bound State of Cytochrome P450cam. J Am Chem Soc 2023; 145:23488-23502. [PMID: 37867463 DOI: 10.1021/jacs.3c06144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
We identified a multisubstrate-bound state, hereby referred as a 3site state, in cytochrome P450cam via integrating molecular dynamics simulation with nuclear magnetic resonance (NMR) pseudocontact shift measurements. The 3site state is a result of simultaneous binding of three camphor molecules in three locations around P450cam: (a) in a well-established "catalytic" site near heme, (b) in a kink-separated "waiting" site along channel-1, and (c) in a previously reported "allosteric" site at E, F, G, and H helical junctions. These three spatially distinct binding modes in the 3site state mutually communicate with each other via homotropic allostery and act cooperatively to render P450cam functional. The 3site state shows a significantly superior fit with NMR pseudo contact shift (PCS) data with a Q-score of 0.045 than previously known bound states and consists of D251 free of salt-bridges with K178 and R186, rendering the enzyme functionally primed. To date, none of the reported cocomplex of P450cam with its redox partner putidaredoxin (pdx) has been able to match solution NMR data and controversial pdx-induced opening of P450cam's channel-1 remains a matter of recurrent discourse. In this regard, inclusion of pdx to the 3site state is able to perfectly fit the NMR PCS measurement with a Q-score of 0.08 and disfavors the pdx-induced opening of channel-1, reconciling previously unexplained remarkably fast hydroxylation kinetics with a koff of 10.2 s-1. Together, our findings hint that previous experimental observations may have inadvertently captured the 3site state as an in vitro solution state, instead of the catalytic state alone, and provided a distinct departure from the conventional understanding of cytochrome P450.
Collapse
Affiliation(s)
- Mohammad Sahil
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Tejender Singh
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Soumya Ghosh
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | | |
Collapse
|
4
|
Tumbic GW, Li J, Jiang T, Hossan MY, Feng C, Thielges MC. Interdomain Interactions Modulate the Active Site Dynamics of Human Inducible Nitric Oxide Synthase. J Phys Chem B 2022; 126:6811-6819. [PMID: 36056879 PMCID: PMC10110350 DOI: 10.1021/acs.jpcb.2c04091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide synthase (NOS) is a homodimeric flavohemoprotein responsible for catalyzing the oxidation of l-arginine (l-Arg) to citrulline and nitric oxide. Electrons are supplied for the reaction via interdomain electron transfer between an N-terminal heme-containing oxygenase domain and a FMN-containing (sub)domain of a C-terminal reductase domain. Extensive attention has focused on elucidating how conformational dynamics regulate electron transfer between the domains. Here we investigate the impact of the interdomain FMN-heme interaction on the heme active site dynamics of inducible NOS (iNOS). Steady state linear and time-resolved two-dimensional infrared (2D IR) spectroscopy was applied to probe a CO ligand at the heme within the oxygenase domain for full-length and truncated or mutated constructs of human iNOS. Whereas the linear IR spectra of the CO ligand were identical among the constructs, 2D IR spectroscopy revealed variation in the frequency dynamics. The wild-type constructs that can properly form the FMN/oxygenase docked state due to the presence of both the FMN and oxygenase domains showed slower dynamics than the oxygenase domain alone. Introduction of the mutation (E546N) predicted to perturb electrostatic interactions between the domains resulted in measured dynamics intermediate between those for the full-length and individual oxygenase domain, consistent with perturbation to the docked/undocked equilibrium. These results indicate that docking of the FMN domain to the oxygenase domain not only brings the FMN cofactor within electron transfer distance of the heme domain but also modulates the dynamics sensed by the CO ligand within the active site in a way expected to promote efficient electron transfer.
Collapse
Affiliation(s)
- Goran W Tumbic
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jinghui Li
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Ting Jiang
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Md Yeathad Hossan
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Changjian Feng
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Megan C Thielges
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
5
|
Thielges MC. Transparent window 2D IR spectroscopy of proteins. J Chem Phys 2021; 155:040903. [PMID: 34340394 PMCID: PMC8302233 DOI: 10.1063/5.0052628] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/21/2021] [Indexed: 02/01/2023] Open
Abstract
Proteins are complex, heterogeneous macromolecules that exist as ensembles of interconverting states on a complex energy landscape. A complete, molecular-level understanding of their function requires experimental tools to characterize them with high spatial and temporal precision. Infrared (IR) spectroscopy has an inherently fast time scale that can capture all states and their dynamics with, in principle, bond-specific spatial resolution. Two-dimensional (2D) IR methods that provide richer information are becoming more routine but remain challenging to apply to proteins. Spectral congestion typically prevents selective investigation of native vibrations; however, the problem can be overcome by site-specific introduction of amino acid side chains that have vibrational groups with frequencies in the "transparent window" of protein spectra. This Perspective provides an overview of the history and recent progress in the development of transparent window 2D IR of proteins.
Collapse
Affiliation(s)
- Megan C. Thielges
- Department of Chemistry, Indiana University, Bloomington,
Indiana 47405, USA
| |
Collapse
|
6
|
Tumbic GW, Hossan MY, Thielges MC. Protein Dynamics by Two-Dimensional Infrared Spectroscopy. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:299-321. [PMID: 34314221 PMCID: PMC8713465 DOI: 10.1146/annurev-anchem-091520-091009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Proteins function as ensembles of interconverting structures. The motions span from picosecond bond rotations to millisecond and longer subunit displacements. Characterization of functional dynamics on all spatial and temporal scales remains challenging experimentally. Two-dimensional infrared spectroscopy (2D IR) is maturing as a powerful approach for investigating proteins and their dynamics. We outline the advantages of IR spectroscopy, describe 2D IR and the information it provides, and introduce vibrational groups for protein analysis. We highlight example studies that illustrate the power and versatility of 2D IR for characterizing protein dynamics and conclude with a brief discussion of the outlook for biomolecular 2D IR.
Collapse
Affiliation(s)
- Goran W Tumbic
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, USA;
| | - Md Yeathad Hossan
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, USA;
| | - Megan C Thielges
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, USA;
| |
Collapse
|
7
|
Ramos S, Mammoser CC, Thibodeau KE, Thielges MC. Dynamics underlying hydroxylation selectivity of cytochrome P450cam. Biophys J 2021; 120:912-923. [PMID: 33545101 PMCID: PMC8008267 DOI: 10.1016/j.bpj.2021.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022] Open
Abstract
Structural heterogeneity and the dynamics of the complexes of enzymes with substrates can determine the selectivity of catalysis; however, fully characterizing how remains challenging as heterogeneity and dynamics can vary at the spatial level of an amino acid residue and involve rapid timescales. We demonstrate the nascent approach of site-specific two-dimensional infrared (IR) spectroscopy to investigate the archetypical cytochrome P450, P450cam, to better delineate the mechanism of the lower regioselectivity of hydroxylation of the substrate norcamphor in comparison to the native substrate camphor. Specific locations are targeted throughout the enzyme by selectively introducing cyano groups that have frequencies in a spectrally isolated region of the protein IR spectrum as local vibrational probes. Linear and two-dimensional IR spectroscopy were applied to measure the heterogeneity and dynamics at each probe and investigate how they differentiate camphor and norcamphor recognition. The IR data indicate that the norcamphor complex does not fully induce a large-scale conformational change to a closed state of the enzyme adopted in the camphor complex. Additionally, a probe directed at the bound substrate experiences rapidly interconverting states in the norcamphor complex that explain the hydroxylation product distribution. Altogether, the study reveals large- and small-scale structural heterogeneity and dynamics that could contribute to selectivity of a cytochrome P450 and illustrates the approach of site-selective IR spectroscopy to elucidate protein dynamics.
Collapse
Affiliation(s)
- Sashary Ramos
- Department of Chemistry, Indiana University, Bloomington, Indiana
| | | | | | - Megan C Thielges
- Department of Chemistry, Indiana University, Bloomington, Indiana.
| |
Collapse
|
8
|
Guengerich FP, Child SA, Barckhausen IR, Goldfarb MH. Kinetic Evidence for an Induced Fit Mechanism in the Binding of the Substrate Camphor by Cytochrome P450 cam. ACS Catal 2021; 11:639-649. [PMID: 34327042 PMCID: PMC8318206 DOI: 10.1021/acscatal.0c04455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacterial cytochrome P450 (P450) 101A1 (P450cam) has served as a prototype among the P450 enzymes and has high catalytic activity towards its cognate substrate, camphor. X-ray crystallography and NMR and IR spectroscopy have demonstrated the existence of multiple conformations of many P450s, including P450cam. Kinetic studies have indicated that substrate binding to several P450s is dominated by a conformational selection process, in which the substrate binds an individual conformer(s) of the unliganded enzyme. P450cam was found to differ in that binding of the substrate camphor is dominated by an induced fit mechanism, in which the enzyme binds camphor and then changes conformation, as evidenced by the equivalence of binding eigenvalues observed when varying both camphor and P450cam concentrations. The accessory protein putidaredoxin had no effect on substrate binding. Estimation of the rate of dissociation of the P450cam·camphor complex (15 s-1) and fitting of the data yield a minimal kinetic mechanism in which camphor binds (1.5 × 107 M-1 s-1) and the initial P450cam•camphor complex undergoes a reversible equilibrium (k forward 112 s-1, k reverse 28 s-1) to a final complex. This induced fit mechanism differs from those reported for several mammalian P450s and bacterial P450BM-3, indicative of the diversity of how P450s recognize multiple substrates. However, similar behavior was not observed with the alternate substrates (+)-α-pinene and 2-adamantanone, which probably utilize a conformational selection process.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Stella A Child
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Ian R Barckhausen
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Margo H Goldfarb
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
9
|
Abstract
This review examines low-frequency vibrational modes of proteins and their coupling to enzyme catalytic sites. That protein motions are critical to enzyme function is clear, but the kinds of motions present in proteins and how they are involved in function remain unclear. Several models of enzyme-catalyzed reaction suggest that protein dynamics may be involved in the chemical step of the catalyzed reaction, but the evidence in support of such models is indirect. Spectroscopic studies of low-frequency protein vibrations consistently show that there are underdamped modes of the protein with frequencies in the tens of wavenumbers where overdamped behavior would be expected. Recent studies even show that such underdamped vibrations modulate enzyme active sites. These observations suggest that increasingly sophisticated spectroscopic methods will be able to unravel the link between low-frequency protein vibrations and enzyme function.
Collapse
|
10
|
Ugur I, Chandrasekhar P. Proton relay network in P450cam formed upon docking of putidaredoxin. Proteins 2019; 88:558-572. [PMID: 31597203 DOI: 10.1002/prot.25835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/13/2019] [Accepted: 09/28/2019] [Indexed: 11/08/2022]
Abstract
Cytochromes P450 are versatile heme-based enzymes responsible for vital life processes. Of these, P450cam (substrate camphor) has been most studied. Despite this, precise mechanisms of the key O─O cleavage step remain partly elusive to date; effects observed in various enzyme mutants remain partly unexplained. We have carried out extended (to 1000 ns) MM-MD and follow-on quantum mechanics/molecular mechanics computations, both on the well-studied FeOO state and on Cpd(0) (compound 0). Our simulations include (all camphor-bound): (a) WT (wild type), FeOO state. (b) WT, Cpd(0). (c) Pdx (Putidaredoxin, redox partner of P450)-docked-WT, FeOO state. (d) Pdx-docked WT, Cpd(0). (e) Pdx-docked T252A mutant, Cpd(0). Among our key findings: (a) Effect of Pdx docking appears to go far beyond that indicated in prior studies: it leads to specific alterations in secondary structure that create the crucial proton relay network. (b) Specific proton relay networks we identify are: FeOO(H)⋯T252⋯nH 2 O⋯D251 in WT; FeOO(H)⋯nH 2 O⋯D251 in T252A mutant; both occur with Pdx docking. (c) Direct interaction of D251 with -FeOOH is, respectively, rare/frequent in WT/T252A mutant. (d) In WT, T252 is in the proton relay network. (e) Positioning of camphor appears significant: when camphor is part of H-bonding network, second protonation appears to be facilitated.
Collapse
Affiliation(s)
- Ilke Ugur
- Research Division, Ashwin-Ushas Corporation, Marlboro, New Jersey
| | | |
Collapse
|
11
|
Ramos S, Thielges MC. Site-Specific 1D and 2D IR Spectroscopy to Characterize the Conformations and Dynamics of Protein Molecular Recognition. J Phys Chem B 2019; 123:3551-3566. [PMID: 30848912 DOI: 10.1021/acs.jpcb.9b00969] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proteins exist as ensembles of interconverting states on a complex energy landscape. A complete, molecular-level understanding of their function requires knowledge of the populated states and thus the experimental tools to characterize them. Infrared (IR) spectroscopy has an inherently fast time scale that can capture all states and their dynamics with, in principle, bond-specific spatial resolution, and 2D IR methods that provide richer information are becoming more routine. Although application of IR spectroscopy for investigation of proteins is challenged by spectral congestion, the issue can be overcome by site-specific introduction of amino acid side chains that have IR probe groups with frequency-resolved absorptions, which furthermore enables selective characterization of different locations in proteins. Here, we briefly introduce the biophysical methods and summarize the current progress toward the study of proteins. We then describe our efforts to apply site-specific 1D and 2D IR spectroscopy toward elucidation of protein conformations and dynamics to investigate their involvement in protein molecular recognition, in particular mediated by dynamic complexes: plastocyanin and its binding partner cytochrome f, cytochrome P450s and substrates or redox partners, and Src homology 3 domains and proline-rich peptide motifs. We highlight the advantages of frequency-resolved probes to characterize specific, local sites in proteins and uncover variation among different locations, as well as the advantage of the fast time scale of IR spectroscopy to detect rapidly interconverting states. In addition, we illustrate the greater insight provided by 2D methods and discuss potential routes for further advancement of the field of biomolecular 2D IR spectroscopy.
Collapse
Affiliation(s)
- Sashary Ramos
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Megan C Thielges
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| |
Collapse
|
12
|
Ramos S, Le Sueur AL, Horness RE, Specker JT, Collins JA, Thibodeau KE, Thielges MC. Heterogeneous and Highly Dynamic Interface in Plastocyanin-Cytochrome f Complex Revealed by Site-Specific 2D-IR Spectroscopy. J Phys Chem B 2019; 123:2114-2122. [PMID: 30742428 DOI: 10.1021/acs.jpcb.8b12157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transient protein complexes are crucial for sustaining dynamic cellular processes. The complexes of electron-transfer proteins are a notable example, such as those formed by plastocyanin (Pc) and cytochrome f (cyt f) in the photosynthetic apparatus. The dynamic and heterogeneous nature of these complexes, however, makes their study challenging. To better elucidate the complex of Nostoc Pc and cyt f, 2D-IR spectroscopy coupled to site-specific labeling with cyanophenylalanine infrared (IR) probes was employed to characterize how the local environments at sites along the surface of Pc were impacted by cyt f binding. The results indicate that Pc most substantially engages with cyt f via the hydrophobic patch around the copper redox site. Complexation with cyt f led to an increase in inhomogeneous broadening of the probe absorptions, reflective of increased heterogeneity of interactions with their environment. Notably, most of the underlying states interconverted very rapidly (1 to 2 ps), suggesting a complex with a highly mobile interface. The data support a model of the complex consisting of a large population of an encounter complex. Additionally, the study demonstrates the application of 2D-IR spectroscopy with site-specifically introduced probes to reveal new quantitative insight about dynamic biochemical systems.
Collapse
Affiliation(s)
- Sashary Ramos
- Indiana University , Department of Chemistry , Bloomington , Indiana 47405 , United States
| | - Amanda L Le Sueur
- Indiana University , Department of Chemistry , Bloomington , Indiana 47405 , United States
| | - Rachel E Horness
- Indiana University , Department of Chemistry , Bloomington , Indiana 47405 , United States
| | - Jonathan T Specker
- Indiana University , Department of Chemistry , Bloomington , Indiana 47405 , United States
| | - Jessica A Collins
- Indiana University , Department of Chemistry , Bloomington , Indiana 47405 , United States
| | - Katherine E Thibodeau
- Indiana University , Department of Chemistry , Bloomington , Indiana 47405 , United States
| | - Megan C Thielges
- Indiana University , Department of Chemistry , Bloomington , Indiana 47405 , United States
| |
Collapse
|
13
|
Ramos S, Basom EJ, Thielges MC. Conformational Change Induced by Putidaredoxin Binding to Ferrous CO-ligated Cytochrome P450cam Characterized by 2D IR Spectroscopy. Front Mol Biosci 2018; 5:94. [PMID: 30483514 PMCID: PMC6243089 DOI: 10.3389/fmolb.2018.00094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/22/2018] [Indexed: 11/16/2022] Open
Abstract
The importance of conformational dynamics to protein function is now well-appreciated. An outstanding question is whether they are involved in the effector role played by putidaredoxin (Pdx) in its reduction of the O2 complex of cytochrome P450cam (P450cam), an archetypical member of the cytochrome P450 superfamily. Recent studies have reported that binding of Pdx induces a conformational change from a closed to an open state of ferric P450cam, but a similar conformational change does not appear to occur for the ferrous, CO-ligated enzyme. To better understand the effector role of Pdx when binding the ferrous, CO-ligated P450cam, we applied 2D IR spectroscopy to compare the conformations and dynamics of the wild-type (wt) enzyme in the absence and presence of Pdx, as well as of L358P P450cam (L358P), which has served as a putative model for the Pdx complex. The CO vibrations of the Pdx complex and L358P report population of two conformational states in which the CO experiences distinct environments. The dynamics among the CO frequencies indicate that the energy landscape of substates within one conformation are reflective of the closed state of P450cam, and for the other conformation, differ from the free wt enzyme, but are equivalent between the Pdx complex and L358P. The two states co-populated by the Pdx complex are postulated to reflect a loosely bound encounter complex and a more tightly bound state, as is commonly observed for the dynamic complexes of redox partners. Significantly, this study shows that the binding of Pdx to ferrous, CO-ligated P450cam does perturb the conformational ensemble in a way that might underlie the effector role of Pdx.
Collapse
Affiliation(s)
- Sashary Ramos
- Department of Chemistry, Indiana University, Bloomington, IN, United States
| | - Edward J Basom
- Department of Chemistry, Indiana University, Bloomington, IN, United States
| | - Megan C Thielges
- Department of Chemistry, Indiana University, Bloomington, IN, United States
| |
Collapse
|
14
|
Kiefer LM, Kubarych KJ. Two-dimensional infrared spectroscopy of coordination complexes: From solvent dynamics to photocatalysis. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Basom EJ, Manifold BA, Thielges MC. Conformational Heterogeneity and the Affinity of Substrate Molecular Recognition by Cytochrome P450cam. Biochemistry 2017; 56:3248-3256. [PMID: 28581729 DOI: 10.1021/acs.biochem.7b00238] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The broad and variable substrate specificity of cytochrome P450 enzymes makes them a model system for studying the determinants of protein molecular recognition. The archetypal cytochrome P450cam (P450cam) is a relatively specific P450, a feature once attributed to the high rigidity of its active site. However, increasingly studies have provided evidence of the importance of conformational changes to P450cam activity. Here we used infrared (IR) spectroscopy to investigate the molecular recognition of P450cam. Toward this goal, and to assess the influence of a hydrogen bond (H-bond) between active site residue Y96 and substrates, two variants in which Y96 is replaced by a cyanophenyl (Y96CNF) or phenyl (Y96F) group were characterized in complexes with the substrates camphor, isoborneol, and camphane. These combinations allow for a comparison of complexes in which the moieties on both the protein and substrate can serve as a H-bond donor, acceptor, or neither. The IR spectra of heme-bound CO and the site-specifically incorporated CN of Y96CNF were analyzed to characterize the number and nature of environments in each protein, both in the free and bound states. Although the IR spectra do not support the idea that protein-substrate H-bonding is central to P450cam recognition, the data altogether suggest that the differing conformational heterogeneity in the active site of the P450cam variants and changes in heterogeneity upon binding of different substrates likely contribute to their variable affinities via a conformational selection mechanism. This study further extends our understanding of the molecular recognition of archetypal P450cam and demonstrates the application of IR spectroscopy combined with selective protein modification to delineate protein-ligand interactions.
Collapse
Affiliation(s)
- Edward J Basom
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Bryce A Manifold
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Megan C Thielges
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
16
|
Le Sueur AL, Ramos S, Ellefsen JD, Cook S, Thielges MC. Evaluation of p-(13C,15N-Cyano)phenylalanine as an Extended Time Scale 2D IR Probe of Proteins. Anal Chem 2017; 89:5254-5260. [DOI: 10.1021/acs.analchem.6b04650] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Amanda L. Le Sueur
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Sashary Ramos
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Jonathan D. Ellefsen
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Silas Cook
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Megan C. Thielges
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
17
|
Ramos S, Scott KJ, Horness RE, Le Sueur AL, Thielges MC. Extended timescale 2D IR probes of proteins: p-cyanoselenophenylalanine. Phys Chem Chem Phys 2017; 19:10081-10086. [PMID: 28367555 PMCID: PMC6252261 DOI: 10.1039/c7cp00403f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The importance of dynamics to the function of proteins is well appreciated, but the difficulty in their measurement impedes investigation into their precise role(s). 2D IR spectroscopy is a developing approach for the study of dynamics and has motivated efforts to develop spectrally resolved IR probe groups that enable its application for measuring the dynamics at specific sites in a protein. A challenge with this approach is that the timescales accessible are limited by the vibrational lifetimes of the probes. Toward development of better probes for 2D IR spectroscopy of protein dynamics, we report the characterization of p-cyano-seleno-phenylalanine (CNSePhe), a derivative of the well established IR probe p-cyano-phenylalanine (CNPhe), by FT IR, pump-probe, and 2D IR spectroscopy. The incorporation of the heavy Se atom decouples the CN vibration from the rest in the molecule. Although this leads to a reduction of the transition dipole strength, and thus a reduction in signal intensity, it also dramatically increases the vibrational lifetime, enabling collection of 2D IR spectra for analysis of molecular dynamics on much longer timescales. Interestingly, we also find that the lifetime for CNSePhe shows increased sensitivity to the presence of hydrogen bonding interactions with the CN, suggesting that the probe should be useful for interpretation of CN spectra and possibly for the study of solvation.
Collapse
Affiliation(s)
- S. Ramos
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, USA.
| | - K. J. Scott
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, USA.
| | - R. E. Horness
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, USA.
| | - A. L. Le Sueur
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, USA.
| | - M. C. Thielges
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, USA.
| |
Collapse
|
18
|
Stevenson P, Tokmakoff A. Ultrafast Fluctuations of High Amplitude Electric Fields in Lipid Membranes. J Am Chem Soc 2017; 139:4743-4752. [DOI: 10.1021/jacs.6b12412] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Paul Stevenson
- Department
of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts
Ave., Cambridge, Massachusetts 02139, United States
- Department
of Chemistry, James Frank Institute, and The Institute
for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department
of Chemistry, James Frank Institute, and The Institute
for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
19
|
Maj M, Ahn C, Błasiak B, Kwak K, Han H, Cho M. Isonitrile as an Ultrasensitive Infrared Reporter of Hydrogen-Bonding Structure and Dynamics. J Phys Chem B 2016; 120:10167-10180. [DOI: 10.1021/acs.jpcb.6b04319] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Michał Maj
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic
Science (IBS) and ‡Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Changwoo Ahn
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic
Science (IBS) and ‡Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Bartosz Błasiak
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic
Science (IBS) and ‡Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Kyungwon Kwak
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic
Science (IBS) and ‡Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Hogyu Han
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic
Science (IBS) and ‡Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic
Science (IBS) and ‡Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
20
|
Basom EJ, Maj M, Cho M, Thielges MC. Site-Specific Characterization of Cytochrome P450cam Conformations by Infrared Spectroscopy. Anal Chem 2016; 88:6598-606. [PMID: 27185328 DOI: 10.1021/acs.analchem.6b01520] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Conformational changes are central to protein function but challenging to characterize with both high spatial and temporal precision. The inherently fast time scale and small chromophores of infrared (IR) spectroscopy are well-suited for characterization of potentially rapidly fluctuating environments, and when frequency-resolved probes are incorporated to overcome spectral congestion, enable characterization of specific sites in proteins. We selectively incorporated p-cyanophenylalanine (CNF) as a vibrational probe at five distinct locations in the enzyme cytochrome P450cam and used IR spectroscopy to characterize the environments in substrate and/or ligand complexes reflecting those in the catalytic cycle. Molecular dynamics (MD) simulations were performed to provide a structural basis for spectral interpretation. Together the experimental and simulation data suggest that the CN frequencies are sensitive to both long-range influences, resulting from the particular location of a residue within the enzyme, as well as short-range influences from hydrogen bonding and packing interactions. The IR spectra demonstrate that the environments and effects of substrate and/or ligand binding are different at each position probed and also provide evidence that a single site can experience multiple environments. This study illustrates how IR spectroscopy, when combined with the spectral decongestion and spatial selectivity afforded by CNF incorporation, provides detailed information about protein structural changes that underlie function.
Collapse
Affiliation(s)
- Edward J Basom
- Department of Chemistry, Indiana University , 800 East Kirkwood, Bloomington, Indiana 47405, United States
| | - Michał Maj
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University , Seoul 02841, Republic of Korea.,Department of Chemistry, Korea University , Seoul 02841, Republic of Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University , Seoul 02841, Republic of Korea.,Department of Chemistry, Korea University , Seoul 02841, Republic of Korea
| | - Megan C Thielges
- Department of Chemistry, Indiana University , 800 East Kirkwood, Bloomington, Indiana 47405, United States
| |
Collapse
|
21
|
Horness RE, Basom EJ, Mayer JP, Thielges MC. Resolution of Site-Specific Conformational Heterogeneity in Proline-Rich Molecular Recognition by Src Homology 3 Domains. J Am Chem Soc 2016; 138:1130-3. [PMID: 26784847 DOI: 10.1021/jacs.5b11999] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conformational heterogeneity and dynamics are increasingly evoked in models of protein molecular recognition but are challenging to experimentally characterize. Here we combine the inherent temporal resolution of infrared (IR) spectroscopy with the spatial resolution afforded by selective incorporation of carbon-deuterium (C-D) bonds, which provide frequency-resolved absorptions within a protein IR spectrum, to characterize the molecular recognition of the Src homology 3 (SH3) domain of the yeast protein Sho1 with its cognate proline-rich (PR) sequence of Pbs2. The IR absorptions of C-D bonds introduced at residues along a peptide of the Pbs2 PR sequence report on the changes in the local environments upon binding to the SH3 domain. Interestingly, upon forming the complex the IR spectra of the peptides labeled with C-D bonds at either of the two conserved prolines of the PXXP consensus recognition sequence show more absorptions than there are C-D bonds, providing evidence for the population of multiple states. In contrast, the NMR spectra of the peptides labeled with (13)C at the same residues show only single resonances, indicating rapid interconversion on the NMR time scale. Thus, the data suggest that the SH3 domain recognizes its cognate peptide with a component of induced fit molecular recognition involving the adoption of multiples states, which have previously gone undetected due to interconversion between the populated states that is too fast to resolve using conventional methods.
Collapse
Affiliation(s)
- Rachel E Horness
- Department of Chemistry, Indiana University , 800 East Kirkwood, Bloomington, Indiana 47405, United States
| | - Edward J Basom
- Department of Chemistry, Indiana University , 800 East Kirkwood, Bloomington, Indiana 47405, United States
| | - John P Mayer
- Department of Chemistry, Indiana University , 800 East Kirkwood, Bloomington, Indiana 47405, United States
| | - Megan C Thielges
- Department of Chemistry, Indiana University , 800 East Kirkwood, Bloomington, Indiana 47405, United States
| |
Collapse
|
22
|
Both P, Busch H, Kelly PP, Mutti FG, Turner NJ, Flitsch SL. Whole-Cell Biocatalysts for Stereoselective C-H Amination Reactions. Angew Chem Int Ed Engl 2015; 55:1511-3. [PMID: 26689856 DOI: 10.1002/anie.201510028] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Indexed: 01/30/2023]
Abstract
Enantiomerically pure chiral amines are ubiquitous chemical building blocks in bioactive pharmaceutical products and their synthesis from simple starting materials is of great interest. One of the most attractive strategies is the stereoselective installation of a chiral amine through C-H amination, which is a challenging chemical transformation. Herein we report the application of a multienzyme cascade, generated in a single bacterial whole-cell system, which is able to catalyze stereoselective benzylic aminations with ee values of 97.5%. The cascade uses four heterologously expressed recombinant enzymes with cofactors provided by the host cell and isopropyl amine added as the amine donor. The cascade presents the first example of the successful de novo design of a single whole-cell biocatalyst for formal stereoselective C-H amination.
Collapse
Affiliation(s)
- Peter Both
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Hanna Busch
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Paul P Kelly
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Francesco G Mutti
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Nicholas J Turner
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Sabine L Flitsch
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
23
|
Both P, Busch H, Kelly PP, Mutti FG, Turner NJ, Flitsch SL. Ganzzellen-Biokatalysator für stereoselektive C-H-Aminierungen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201510028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Peter Both
- School of Chemistry, Manchester Institute of Biotechnology; The University of Manchester; 131 Princess Street Manchester M1 7DN Vereinigtes Königreich
| | - Hanna Busch
- School of Chemistry, Manchester Institute of Biotechnology; The University of Manchester; 131 Princess Street Manchester M1 7DN Vereinigtes Königreich
| | - Paul P. Kelly
- School of Chemistry, Manchester Institute of Biotechnology; The University of Manchester; 131 Princess Street Manchester M1 7DN Vereinigtes Königreich
| | - Francesco G. Mutti
- School of Chemistry, Manchester Institute of Biotechnology; The University of Manchester; 131 Princess Street Manchester M1 7DN Vereinigtes Königreich
| | - Nicholas J. Turner
- School of Chemistry, Manchester Institute of Biotechnology; The University of Manchester; 131 Princess Street Manchester M1 7DN Vereinigtes Königreich
| | - Sabine L. Flitsch
- School of Chemistry, Manchester Institute of Biotechnology; The University of Manchester; 131 Princess Street Manchester M1 7DN Vereinigtes Königreich
| |
Collapse
|
24
|
Bartolowits M, Davisson VJ. Considerations of Protein Subpockets in Fragment-Based Drug Design. Chem Biol Drug Des 2015; 87:5-20. [PMID: 26307335 DOI: 10.1111/cbdd.12631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
While the fragment-based drug design approach continues to gain importance, gaps in the tools and methods available in the identification and accurate utilization of protein subpockets have limited the scope. The importance of these features of small molecule-protein recognition is highlighted with several examples. A generalized solution for the identification of subpockets and corresponding chemical fragments remains elusive, but there are numerous advancements in methods that can be used in combination to address subpockets. Finally, additional examples of approaches that consider the relative importance of small-molecule co-dependence of protein conformations are highlighted to emphasize an increased significance of subpockets, especially at protein interfaces.
Collapse
Affiliation(s)
- Matthew Bartolowits
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA
| | - V Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA
| |
Collapse
|