1
|
Sahu ID, Lorigan GA. Electron Paramagnetic Resonance as a Tool for Studying Membrane Proteins. Biomolecules 2020; 10:E763. [PMID: 32414134 PMCID: PMC7278021 DOI: 10.3390/biom10050763] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane proteins possess a variety of functions essential to the survival of organisms. However, due to their inherent hydrophobic nature, it is extremely difficult to probe the structure and dynamic properties of membrane proteins using traditional biophysical techniques, particularly in their native environments. Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling (SDSL) is a very powerful and rapidly growing biophysical technique to study pertinent structural and dynamic properties of membrane proteins with no size restrictions. In this review, we will briefly discuss the most commonly used EPR techniques and their recent applications for answering structure and conformational dynamics related questions of important membrane protein systems.
Collapse
Affiliation(s)
- Indra D. Sahu
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
2
|
Bottorf L, Sahu ID, McCarrick RM, Lorigan GA. Utilization of 13C-labeled amino acids to probe the α-helical local secondary structure of a membrane peptide using electron spin echo envelope modulation (ESEEM) spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:1447-1451. [PMID: 29694834 PMCID: PMC5957090 DOI: 10.1016/j.bbamem.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/27/2018] [Accepted: 04/09/2018] [Indexed: 11/22/2022]
Abstract
Electron spin echo envelope modulation (ESEEM) spectroscopy in combination with site-directed spin labeling (SDSL) has been established as a valuable biophysical technique to provide site-specific local secondary structure of membrane proteins. This pulsed electron paramagnetic resonance (EPR) method can successfully distinguish between α-helices, β-sheets, and 310-helices by strategically using 2H-labeled amino acids and SDSL. In this study, we have explored the use of 13C-labeled residues as the NMR active nuclei for this approach for the first time. 13C-labeled d5-valine (Val) or 13C-labeled d6-leucine (Leu) were substituted at a specific Val or Leu residue (i), and a nitroxide spin label was positioned 2 or 3 residues away (denoted i-2 and i-3) on the acetylcholine receptor M2δ (AChR M2δ) in a lipid bilayer. The 13C ESEEM peaks in the FT frequency domain data were observed for the i-3 samples, and no 13C peaks were observed in the i-2 samples. The resulting spectra were indicative of the α-helical local secondary structure of AChR M2δ in bicelles. This study provides more versatility and alternative options when using this ESEEM approach to study the more challenging recombinant membrane protein secondary structures.
Collapse
Affiliation(s)
- Lauren Bottorf
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States.
| |
Collapse
|
3
|
Liu L, Sahu ID, Bottorf L, McCarrick RM, Lorigan GA. Investigating the Secondary Structure of Membrane Peptides Utilizing Multiple 2H-Labeled Hydrophobic Amino Acids via Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy. J Phys Chem B 2018; 122:4388-4396. [PMID: 29614227 DOI: 10.1021/acs.jpcb.7b11890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An electron spin echo envelope modulation (ESEEM) approach was used to probe local secondary structures of membrane proteins and peptides. This ESEEM method detects dipolar couplings between 2H-labeled nuclei on the side chains of an amino acid (Leu or Val) and a strategically placed nitroxide spin-label in the proximity up to 8 Å. ESEEM spectra patterns for different samples correlate directly to the periodic structural feature of different secondary structures. Since this pattern can be affected by the side chain length and flexibility of the 2H-labeled amino acid used in the experiment, it is important to examine several different hydrophobic amino acids (d3 Ala, d8 Val, d8 Phe) utilizing this ESEEM approach. In this work, a series of ESEEM data were collected on the AChR M2δ membrane peptide to build a reference for the future application of this approach for various biological systems. The results indicate that, despite the relative intensity and signal-to-noise level, all amino acids share a similar ESEEM modulation pattern for α-helical structures. Thus, all commercially available 2H-labeled hydrophobic amino acids can be utilized as probes for the further application of this ESEEM approach. Also, the ESEEM signal intensities increase as the side chain length gets longer or less rigid. In addition, longer side chain amino acids had a larger 2H ESEEM FT peak centered at the 2H Larmor frequency for the i ± 4 sample when compared to the corresponding i ± 3 sample. For shorter side chain amino acids, the 2H ESEEM FT peak intensity ratio between i ± 4 and i ± 3 was not well-defined.
Collapse
Affiliation(s)
- Lishan Liu
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Lauren Bottorf
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| |
Collapse
|
4
|
Sahu ID, Lorigan GA. Site-Directed Spin Labeling EPR for Studying Membrane Proteins. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3248289. [PMID: 29607317 PMCID: PMC5828257 DOI: 10.1155/2018/3248289] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/21/2017] [Indexed: 01/13/2023]
Abstract
Site-directed spin labeling (SDSL) in combination with electron paramagnetic resonance (EPR) spectroscopy is a rapidly expanding powerful biophysical technique to study the structural and dynamic properties of membrane proteins in a native environment. Membrane proteins are responsible for performing important functions in a wide variety of complicated biological systems that are responsible for the survival of living organisms. In this review, a brief introduction of the most popular SDSL EPR techniques and illustrations of recent applications for studying pertinent structural and dynamic properties on membrane proteins will be discussed.
Collapse
Affiliation(s)
- Indra D. Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
5
|
Bottorf L, Rafferty S, Sahu ID, McCarrick RM, Lorigan GA. Utilizing Electron Spin Echo Envelope Modulation To Distinguish between the Local Secondary Structures of an α-Helix and an Amphipathic 3 10-Helical Peptide. J Phys Chem B 2017; 121:2961-2967. [PMID: 28339206 DOI: 10.1021/acs.jpcb.7b00626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electron spin echo envelope modulation (ESEEM) spectroscopy was used to distinguish between the local secondary structures of an α-helix and a 310-helix. Previously, we have shown that ESEEM spectroscopy in combination with site-directed spin labeling (SDSL) and 2H-labeled amino acids (i) can probe the local secondary structure of α-helices, resulting in an obvious deuterium modulation pattern, where i+4 positions generally show larger 2H ESEEM peak intensities than i+3 positions. Here, we have hypothesized that due to the unique turn periodicities of an α-helix (3.6 residues per turn with a pitch of 5.4 Å) and a 310-helix (3.1 residues per turn with a pitch of 5.8-6.0 Å), the opposite deuterium modulation pattern would be observed for a 310-helix. In this study, 2H-labeled d10-leucine (Leu) was substituted at a specific Leu residue (i) and a nitroxide spin label was positioned 2, 3, and 4 residues away (denoted i+2 to i+4) on an amphipathic model peptide, LRL8. When LRL8 is solubilized in trifluoroethanol (TFE), the peptide adopts an α-helical structure, and alternatively, forms a 310-helical secondary structure when incorporated into liposomes. Larger 2H ESEEM peaks in the FT frequency domain data were observed for the i+4 samples when compared to the i+3 samples for the α-helix whereas the opposite pattern was revealed for the 310-helix. These unique patterns provide pertinent local secondary structural information to distinguish between the α-helical and 310-helical structural motifs for the first time using this ESEEM spectroscopic approach with short data acquisition times (∼30 min) and small sample concentrations (∼100 μM) as well as providing more site-specific secondary structural information compared to other common biophysical approaches, such as CD.
Collapse
Affiliation(s)
- Lauren Bottorf
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Sophia Rafferty
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| |
Collapse
|
6
|
Liu L, Hess J, Sahu ID, FitzGerald PG, McCarrick RM, Lorigan GA. Probing the Local Secondary Structure of Human Vimentin with Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy. J Phys Chem B 2016; 120:12321-12326. [PMID: 27934222 DOI: 10.1021/acs.jpcb.6b10054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previously, an electron spin echo envelope modulation (ESEEM) spectroscopic approach was established to probe the local secondary structure of membrane proteins and peptides utilizing site-directed spin-labeling (SDSL). In this method, the side chain of one amino acid residue is selectively 2H-labeled and a nitroxide spin label is strategically placed 1, 2, 3, or 4 amino acids away from the 2H-labeled amino acid (denoted as i ± 1 to i ± 4, i represents the 2H-labeled amino acid). ESEEM can detect the dipolar coupling between the nitroxide spin label and 2H atoms on the amino acid side chain. Due to the periodicity of different secondary structures, different ESEEM patterns can be revealed to probe the structure. For an α-helical structural component, a 2H ESEEM signal can be detected for i ± 3 and i ± 4 samples, but not for i ± 1 or i ± 2 samples. Several 2H-labeled hydrophobic amino acids have been demonstrated in model system that can be utilized to identify local secondary structures via this ESEEM approach in an extremely efficient fashion. In this study, the ESEEM approach was used to investigate the rod 2B region of the full-length intermediate filament protein human vimentin. Consistent with previous EPR and X-ray crystallography results, our ESEEM results indicated helical structural components within this region. Thus, this ESEEM approach is able to identify α-helical structural components despite the coiled-coil nature of the vimentin structure. The data show that the human vimentin rod 2B adapted a typical α-helical structure around residue Leu309. This result is consistent with the X-ray data from fragmented protein segments and continuous wave EPR data on the full-length vimentin. Finally, the ESEEM data suggested that a local secondary structure slightly different from a typical α-helix was adopted around residue 340.
Collapse
Affiliation(s)
- Lishan Liu
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - John Hess
- Dept of Cell Biology and Human Anatomy, School of Medicine, University of California , Davis, California 95616, United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Paul G FitzGerald
- Dept of Cell Biology and Human Anatomy, School of Medicine, University of California , Davis, California 95616, United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| |
Collapse
|