1
|
Arantes GM. Redox-Activated Proton Transfer through a Redundant Network in the Q o Site of Cytochrome bc1. J Chem Inf Model 2025; 65:2660-2669. [PMID: 40008618 PMCID: PMC11898062 DOI: 10.1021/acs.jcim.4c02361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Proton translocation catalyzed by cytochrome bc1 (respiratory complex III) during coenzyme-Q redox cycling is a critical bioenergetic process, yet its detailed molecular mechanism remains incompletely understood. In this study, the energetics of the long-range proton transfers through multiple proton-conducting wires in the Qo site of the bc1 complex was investigated computationally using hybrid QM/MM simulations and a specialized reaction coordinate. Key reactive groups and proton transfer mechanisms were characterized, confirming the propionate-A group of heme bL as a plausible proton acceptor. Upon coenzyme-Q oxidation, a Grotthuss hopping mechanism is activated, facilitating proton transfer along three distinct pathways with comparable barriers and stability. These pathways operate redundantly, forming a robust proton-conducting network, and account for the unusual experimental behavior observed in single-point mutations. Energetic analyses exclude charged closed-shell species as likely intermediates and propose a reaction sequence for coenzyme-Q oxidation proceeding as QH2 → QH• → Q0, either via coupled proton-electron transfers or stepwise mechanisms involving open-shell intermediates. These findings elucidate mechanistic details of the Q-cycle and improve our understanding of the catalytic reactions supporting redox-activated proton transfer in respiratory enzymes.
Collapse
Affiliation(s)
- Guilherme M. Arantes
- Department of Biochemistry,
Instituto de Química, Universidade
de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Zandieh A, Shariatpanahi SP, Ravassipour AA, Azadipour J, Nezamtaheri MS, Habibi-Kelishomi Z, Ghanizadeh M, Same-Majandeh A, Majidzadeh-A K, Taheri A, Ansari AM, Javidi MA, Pirnia MM, Goliaei B. An amplification mechanism for weak ELF magnetic fields quantum-bio effects in cancer cells. Sci Rep 2025; 15:2964. [PMID: 39849096 PMCID: PMC11757740 DOI: 10.1038/s41598-025-87235-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025] Open
Abstract
Observing quantum mechanical characteristics in biological processes is a surprising and important discovery. One example, which is gaining more experimental evidence and practical applications, is the effect of weak magnetic fields with extremely low frequencies on cells, especially cancerous ones. In this study, we use a mathematical model of ROS dynamics in cancer cells to show how ROS oscillatory patterns can act as a resonator to amplify the small effects of the magnetic fields on the radical pair dynamics in mitochondrial Complex III. We suggest such a resonator can act in two modes for distinct states in cancer cells: (1) cells at the edge of mitochondrial oscillation and (2) cells with local oscillatory patches. When exposed to magnetic fields, the first group exhibits high-amplitude oscillations, while the second group synchronizes to reach a whole-cell oscillation. Both types of amplification are frequency-dependent in the range of hertz and sub-hertz. We use UV radiation as a positive control to observe the two states of cells in DU and HELA cell lines. Application of magnetic fields shows frequency-dependent results on both the ROS and mitochondrial potential which agree with the model for both type of cells. We also observe the oscillatory behavior in the time-lapse fluorescence microscopy for 0.02 and 0.04 Hz magnetic fields. Finally, we investigate the dependence of the results on the field strength and propose a quantum spin-forbidden mechanism for the effect of magnetic fields on superoxide production in QO site of mitochondrial Complex III.
Collapse
Affiliation(s)
- Amirali Zandieh
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | | | - Javad Azadipour
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | | | - Mojtaba Ghanizadeh
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Same-Majandeh
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Amir Taheri
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Alireza Madjid Ansari
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Amin Javidi
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | | | - Bahram Goliaei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Hagras MA. Respiratory complex II acting as a homeostatic regulatory sensor. Phys Chem Chem Phys 2024; 26:29976-29986. [PMID: 39620996 DOI: 10.1039/d4cp03552f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The succinate-ubiquinone oxidoreductase (SQR) complex connects two of the cell's most vital energy-producing metabolic processes: the tricarboxylic acid cycle and the electron transport chain. Hence, the SQR complex is essential in cell metabolism, and its malfunction leads to the progression of multiple metabolic disorders and other diseases, such as cancer. In the current study, we calculated the electron tunneling (ET) pathways between the different redox systems in the SQR complex, including the SQR ligands and the distant heme b redox center, using the broken-symmetry semi-empirical ZINDO method. Interestingly, we discovered a water channel running from the mitochondrial matrix, filling the space between Fe3S4 and heme b redox centers. To investigate the physiological function of the water channel, we performed extensive molecular dynamics (MD) simulations of the membrane-embedded SQR complex in small and large water boxes, representing regular (MDA) and extended (MDB) volume states, respectively. We found that under regular volume conditions (MDA), the ET reaction is conducted through both the iron-sulfur cluster chain (i.e., pathway A) and through heme b (i.e., pathway B). Hence, the SQR complex encompasses an internal interferometer similar to the Mach-Zender interferometer, such that the tunneling electron experiences a self-interference effect through pathways A and B, enhancing the SQR complex's overall ET thermodynamics and favoring the forward ET direction of oxidizing succinate to fumarate and reducing ubiquinone to ubiquinol. On the other hand, we found that under extended volume conditions (MDB), the internal water channel of the SQR complex "senses" the expansion in the mitochondrial volume, pushing the heme b and Fe4S3 redox centers apart and hence lowering the SQR equilibrium constant to almost unity. Therefore, the SQR complex could be driven to work in the reverse direction, catalyzing the production of ubiquinone molecules essential for the physiological function of respiratory complexes I and III and restoring the inner-mitochondrial membrane potential, which leads to restoring the function of the H-K anti-porter, pumping K+ outward from the matrix and restoring the regular mitochondrial volume.
Collapse
Affiliation(s)
- Muhammad A Hagras
- Department of Basic Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, USA.
| |
Collapse
|
4
|
Pagán OR. The complexities of ligand/receptor interactions: Exploring the role of molecular vibrations and quantum tunnelling. Bioessays 2024; 46:e2300195. [PMID: 38459808 DOI: 10.1002/bies.202300195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/19/2024] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
Molecular vibrations and quantum tunneling may link ligand binding to the function of pharmacological receptors. The well-established lock-and-key model explains a ligand's binding and recognition by a receptor; however, a general mechanism by which receptors translate binding into activation, inactivation, or modulation remains elusive. The Vibration Theory of Olfaction was proposed in the 1930s to explain this subset of receptor-mediated phenomena by correlating odorant molecular vibrations to smell, but a mechanism was lacking. In the 1990s, inelastic electron tunneling was proposed as a plausible mechanism for translating molecular vibration to odorant physiology. More recently, studies of ligands' vibrational spectra and the use of deuterated ligand analogs have provided helpful information to study this admittedly controversial hypothesis in metabotropic receptors other than olfactory receptors. In the present work, based in part on published experiments from our laboratory using planarians as an experimental organism, I will present a rationale and possible experimental approach for extending this idea to ligand-gated ion channels.
Collapse
Affiliation(s)
- Oné R Pagán
- Department of Biology, West Chester University, West Chester, Pennsylvania, USA
| |
Collapse
|
5
|
Hagras MA. Respiratory Complex III: A Bioengine with a Ligand-Triggered Electron-Tunneling Gating Mechanism. J Phys Chem B 2024; 128:990-1000. [PMID: 38241470 DOI: 10.1021/acs.jpcb.3c07095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Respiratory complex III (a.k.a., the bc1 complex) plays a key role in the electron transport chain in aerobic cells. The bc1 complex exhibits multiple unique electron tunneling (ET) processes, such as ET-bifurcation at the Qo site and movement of the Rieske domain. Moreover, we previously discovered that electron tunneling in the low potential arm of the bc1 complex is regulated by a key phenylalanine residue (Phe90). The main goal of the current work is to study the dynamics of the key Phe90 residue in the electron tunneling reaction between heme bL and heme bH as a function of the occupancy of the Qo and Qi binding sites in the bc1 complex. We simulated the molecular dynamics of four model systems of respiratory complex III with different ligands bound at the Qo and Qi binding sites. In addition, we calculated the electron tunneling rate constants between heme bL and heme bH along the simulated molecular dynamics trajectories. The binding of aromatic ligands at the Qo site induces a conformational cascade that properly positions the Phe90 residue, reducing the through-space ET distance from ∼7 to ∼5.5 Å and thus enhancing the electron transfer rate between the heme bL and the heme bH redox pair. Also, the binding of aromatic ligands at the Qi site induces conformational changes that stabilize the Phe90 conformational variation from ∼1.5 to ∼0.5 Å. Hence, our molecular dynamics simulation results show an on-demand two-step conformational connection between the occupancy of the Qo and Qi binding sites and the conformational dynamics of the Phe90 residue. Additionally, our dynamic electron tunneling results confirm our previously reported findings that the Phe90 residue acts as an electron-tunneling gate or switch, controlling the electron transfer rate between the heme bL and heme bH redox systems.
Collapse
Affiliation(s)
- Muhammad A Hagras
- Department of Basic Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States
| |
Collapse
|
6
|
Hagras MA, Stuchebrukhov AA. Concerted Two-Electron Reduction of Ubiquinone in Respiratory Complex I. J Phys Chem B 2019; 123:5265-5273. [PMID: 31141364 DOI: 10.1021/acs.jpcb.9b04082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Respiratory complex I catalyzes two-electron/two-proton reduction of a ubiquinone (Q) substrate bound at its Q-binding pocket; upon reduction, ubiquinole carries electrons further down the electron transport chain. The mechanism of this two-electron transfer reaction is poorly understood. Here we consider a hypothetical scheme in which two electrons transfer together with two protons in a concerted fashion. On one side, a coupled electron/proton transfer occurs from the reduced N2 FeS cluster and protonated His38 residue, respectively, while on the other side a hydrogen atom transfer occurs from the neutral Tyr87 residue, generating a tyrosyl radical. A method to evaluate the coupling matrix element that corresponds to a concerted tunneling of two electrons was developed. Overall, our calculations indicate that the concerted reaction is feasible, in which case a transient tyrosyl radical is formed during the catalytic cycle of the enzyme.
Collapse
Affiliation(s)
- Muhammad A Hagras
- Department of Chemistry , University of California Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Alexei A Stuchebrukhov
- Department of Chemistry , University of California Davis , One Shields Avenue , Davis , California 95616 , United States
| |
Collapse
|
7
|
Bennett JP. Medical hypothesis: Neurodegenerative diseases arise from oxidative damage to electron tunneling proteins in mitochondria. Med Hypotheses 2019; 127:1-4. [PMID: 31088629 DOI: 10.1016/j.mehy.2019.03.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/15/2022]
Abstract
Mitochondria likely arose from serial endosymbiosis by early eukaryotic cells and control electron flow to molecular oxygen to facilitate energy transformation. Mitochondria translate between the quantum and macroscopic worlds and utilize quantum tunneling of electrons to reduce activation energy barriers to electron flow. Electron tunneling has been extensively characterized in Complex I of the electron transport chain. Age-related increases in oxidative damage to these electron tunneling systems may account for decreased energy storage found in aged and neurodegenerative disease tissues, such as those from sufferers of amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and Parkinson's disease (PD). This hypothesis is testable. If correct, this hypothesis supports pre-symptomatic, mitochondrially-directed oxygen free radical scavenging therapies.
Collapse
Affiliation(s)
- James P Bennett
- Neurodegeneration Therapeutics, Inc., 3050A Berkmar Drive, Charlottesville, VA 22901-3450, United States.
| |
Collapse
|
8
|
Stuchebrukhov AA. Redox-Driven Proton Pumps of the Respiratory Chain. Biophys J 2018; 115:830-840. [PMID: 30119834 DOI: 10.1016/j.bpj.2018.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 11/24/2022] Open
Abstract
In aerobic cells, the proton gradient that drives ATP synthesis is created by three different proton pumps-membrane enzymes of the respiratory electron transport chain known as complex I, III, and IV. Despite the striking dissimilarity of structures and apparent differences in molecular mechanisms of proton pumping, all three enzymes have much in common and employ the same universal physical principles of converting redox energy to proton pumping. In this study, we describe a simple mathematical model that illustrates the general principles of redox-driven proton pumps and discuss their implementation in complex I, III, and IV of the respiratory chain.
Collapse
|
9
|
Hwang SY, Kim J, Kim WY. Fragment-orbital tunneling currents and electronic couplings for analysis of molecular charge-transfer systems. Phys Chem Chem Phys 2018; 20:9146-9156. [PMID: 29560997 DOI: 10.1039/c8cp00266e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In theoretical charge-transfer research, calculation of the electronic coupling element is crucial for examining the degree of the electronic donor-acceptor interaction. The tunneling current (TC), representing the magnitudes and directions of electron flow, provides a way of evaluating electronic couplings, along with the ability of visualizing how electrons flow in systems. Here, we applied the TC theory to π-conjugated organic dimer systems, in the form of our fragment-orbital tunneling current (FOTC) method, which uses the frontier molecular-orbitals of system fragments as diabatic states. For a comprehensive test of FOTC, we assessed how reasonable the computed electronic couplings and the corresponding TC densities are for the hole- and electron-transfer databases HAB11 and HAB7. FOTC gave 12.5% mean relative unsigned error with regard to the high-level ab initio reference. The shown performance is comparable with that of fragment-orbital density functional theory, which gave the same error by 20.6% or 13.9% depending on the formulation. In the test of a set of nucleobase π stacks, we showed that the original TC expression is also applicable to nondegenerate cases under the condition that the overlap between the charge distributions of diabatic states is small enough to offset the energy difference. Lastly, we carried out visual analysis on the FOTC densities of thiophene dimers with different intermolecular alignments. The result depicts an intimate topological connection between the system geometry and electron flow. Our work provides quantitative and qualitative grounds for FOTC, showing it to be a versatile tool in characterization of molecular charge-transfer systems.
Collapse
Affiliation(s)
- Sang-Yeon Hwang
- Department of Chemistry, KAIST, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
| | - Jaewook Kim
- Department of Chemistry, KAIST, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
| | - Woo Youn Kim
- Department of Chemistry, KAIST, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
10
|
Hagras MA, Stuchebrukhov AA. Novel Inhibitors for a Novel Binding Site in Respiratory Complex III. J Phys Chem B 2016; 120:2701-8. [PMID: 26907223 DOI: 10.1021/acs.jpcb.5b12347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new binding site and potential novel inhibitors of the respiratory complex III are described. The site is located at the opposite side of the enzyme with respect to ubiquinol binding site (Qo site), and distinctly different from both Qo and Qi sites (hence designated as Non-Q binding site, NQ). NQ site binding pocket extends up close to Phe90 residue, an internal switch (LH switch) that regulates electron transfer between heme bL and heme bH of the low potential redox chain. Docking studies and molecular dynamics simulations of different molecules to the NQ site revealed potential ligands which exhibit a novel inhibitory effect for bc1 complex by switching the LH switch to "off" conformation, thereby shutting down electron transfer in the low potential redox chain. Moreover, the novel inhibitors have lower binding affinity for both Qo and Qi sites, and hence do not interfere with binding of the natural ligands to those sites. The inhibitory activity of those novel ligands in bc1 complex is suggested to promote the production of reactive oxygen species (ROS) at the Qo site. Hence those ligands are potential candidates for designing new "mitocan" drugs.
Collapse
Affiliation(s)
- Muhammad A Hagras
- Department of Chemistry, University of California One Shields Avenue, Davis, California 95616
| | - Alexei A Stuchebrukhov
- Department of Chemistry, University of California One Shields Avenue, Davis, California 95616
| |
Collapse
|