1
|
Asthagiri DN, Valiya Parambathu A, Beck TL. Consequences of the failure of equipartition for the p- V behavior of liquid water and the hydration free energy components of a small protein. Chem Sci 2025; 16:7503-7512. [PMID: 40160355 PMCID: PMC11951161 DOI: 10.1039/d4sc08437c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Earlier we showed that in the molecular dynamics simulation of a rigid model of water it is necessary to use an integration time-step δ t ≤ 0.5 fs to ensure equipartition between translational and rotational modes. Here we extend that study in the NVT ensemble to NpT conditions and to an aqueous protein. We study neat liquid water with the rigid, SPC/E model and the protein BBA (PDB ID: 1FME) solvated in the rigid, TIP3P model. We examine integration time-steps ranging from 0.5 fs to 4.0 fs for various thermostat plus barostat combinations. We find that a small δ t is necessary to ensure consistent prediction of the simulation volume. Hydrogen mass repartitioning alleviates the problem somewhat, but is ineffective for the typical time-step used with this approach. The compressibility, a measure of volume fluctuations, and the dielectric constant, a measure of dipole moment fluctuations, are also seen to be sensitive to δ t. Using the mean volume estimated from the NpT simulation, we examine the electrostatic and van der Waals contribution to the hydration free energy of the protein in the NVT ensemble. These contributions are also sensitive to δ t. In going from δ t = 2 fs to δ t = 0.5 fs, the change in the net electrostatic plus van der Waals contribution to the hydration of BBA is already in excess of the folding free energy reported for this protein.
Collapse
Affiliation(s)
| | | | - Thomas L Beck
- Oak Ridge National Laboratory One Bethel Valley Road Oak Ridge TN 37830 USA
| |
Collapse
|
2
|
Ruiz-De-La-Cruz G, Sifuentes-Rincón AM, Paredes-Sánchez FA, Parra-Bracamonte GM, Casas E, Riley DG, Perry GA, Welsh TH, Randel RD. Analysis of nonsynonymous SNPs in candidate genes that influence bovine temperament and evaluation of their effect in Brahman cattle. Mol Biol Rep 2024; 51:285. [PMID: 38324050 PMCID: PMC10850011 DOI: 10.1007/s11033-024-09264-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/17/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Temperament is an important production trait in cattle and multiple strategies had been developed to generate molecular markers to assist animal selection. As nonsynonymous single nucleotide polymorphisms are markers with the potential to affect gene functions, they could be useful to predict phenotypic effects. Genetic selection of less stress-responsive, temperamental animals is desirable from an economic and welfare point of view. METHODS AND RESULTS Two nonsynonymous single nucleotide polymorphisms identified in HTR1B and SLC18A2 candidate genes for temperament were analyzed in silico to determine their effects on protein structure. Those nsSNPs allowing changes in proteins were selected for a temperament association analysis in a Brahman population. Transversion effects on protein structure were evaluated in silico for each amino acid change model, revealing structural changes in the proteins of the HTR1B and SLC18A2 genes. The selected nsSNPs were genotyped in a Brahman population (n = 138), and their genotypic effects on three temperament traits were analyzed: exit velocity, pen score, and temperament score. Only the SNP rs209984404-HTR1B (C/A) showed a significant association (P = 0.0144) with pen score. The heterozygous genotype showed a pen score value 1.17 points lower than that of the homozygous CC genotype. CONCLUSION The results showed that in silico analysis could direct the selection of nsSNPs with the potential to change the protein. Non-synonymous single nucleotide polymorphisms causing structural changes and reduced protein stability were identified. Only rs209984404-HTR1B shows that the allele affecting protein stability was associated with the genotype linked to docility in cattle.
Collapse
Affiliation(s)
- Gilberto Ruiz-De-La-Cruz
- Laboratorio de Biotecnología Animal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, 88710, México
| | - Ana María Sifuentes-Rincón
- Laboratorio de Biotecnología Animal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, 88710, México.
| | | | - Gaspar Manuel Parra-Bracamonte
- Laboratorio de Biotecnología Animal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, 88710, México
| | - Eduardo Casas
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, 50010, USA
| | - David G Riley
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | | | - Thomas H Welsh
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | | |
Collapse
|
3
|
Lemcke S, Appeldorn JH, Wand M, Speck T. Toward a structural identification of metastable molecular conformations. J Chem Phys 2023; 159:114105. [PMID: 37712784 DOI: 10.1063/5.0164145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
Interpreting high-dimensional data from molecular dynamics simulations is a persistent challenge. In this paper, we show that for a small peptide, deca-alanine, metastable states can be identified through a neural net based on structural information alone. While processing molecular dynamics data, dimensionality reduction is a necessary step that projects high-dimensional data onto a low-dimensional representation that, ideally, captures the conformational changes in the underlying data. Conventional methods make use of the temporal information contained in trajectories generated through integrating the equations of motion, which forgoes more efficient sampling schemes. We demonstrate that EncoderMap, an autoencoder architecture with an additional distance metric, can find a suitable low-dimensional representation to identify long-lived molecular conformations using exclusively structural information. For deca-alanine, which exhibits several helix-forming pathways, we show that this approach allows us to combine simulations with different biasing forces and yields representations comparable in quality to other established methods. Our results contribute to computational strategies for the rapid automatic exploration of the configuration space of peptides and proteins.
Collapse
Affiliation(s)
- Simon Lemcke
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Jörn H Appeldorn
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Michael Wand
- Institut für Informatik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Thomas Speck
- Institut für Theoretische Physik IV, Universität Stuttgart, Heisenbergstr. 3, 70569 Stuttgart, Germany
| |
Collapse
|
4
|
Jin J, Voth GA. Statistical Mechanical Design Principles for Coarse-Grained Interactions across Different Conformational Free Energy Surfaces. J Phys Chem Lett 2023; 14:1354-1362. [PMID: 36728761 PMCID: PMC9940719 DOI: 10.1021/acs.jpclett.2c03844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Systematic bottom-up coarse-graining (CG) of molecular systems provides a means to explore different coupled length and time scales while treating the molecular-scale physics at a reduced level. However, the configuration dependence of CG interactions often results in CG models with limited applicability for exploring the parametrized configurations. We propose a statistical mechanical theory to design CG interactions across different configurations and conditions. In order to span wide ranges of conformational space, distinct classical CG free energy surfaces for characteristic configurations are identified using molecular collective variables. The coupling interaction between different CG free energy surfaces can then be systematically determined by analogy to quantum mechanical approaches describing coupled states. The present theory can accurately capture the underlying many-body potentials of mean force in the CG variables for various order parameters applied to liquids, interfaces, and in principle proteins, uncovering the complex nature underlying the coupling interaction and imparting a new protocol for the design of predictive multiscale models.
Collapse
Affiliation(s)
| | - Gregory A. Voth
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Adhikari RS, Parambathu AV, Chapman WG, Asthagiri DN. Hydration Free Energies of Polypeptides from Popular Implicit Solvent Models versus All-Atom Simulation Results Based on Molecular Quasichemical Theory. J Phys Chem B 2022; 126:9607-9616. [PMID: 36354351 DOI: 10.1021/acs.jpcb.2c05725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Calculating the hydration free energy of a macromolecule in all-atom simulations has long remained a challenge, necessitating the use of models wherein the effect of the solvent is captured without explicit account of solvent degrees of freedom. This situation has changed with developments in the molecular quasi-chemical theory (QCT)─an approach that enables calculation of the hydration free energy of macromolecules within all-atom simulations at the same resolution as is possible for small molecular solutes. The theory also provides a rigorous and physically transparent framework to conceptualize and model interactions in molecular solutions and thus provides a convenient framework to investigate the assumptions in implicit solvent models. In this study, we compare the results using molecular QCT versus predictions from EEF1, ABSINTH, and GB/SA implicit solvent models for polyglycine and polyalanine solutes covering a range of chain lengths and conformations. The hydration free energies or the differences in hydration free energies between conformers obtained from the implicit solvent models do not agree with explicit solvent results, with the deviations being largest for the group additive EEF1 and ABSINTH models. GB/SA does better in capturing the qualitative trends seen in explicit solvent results. Analysis founded on QCT reveals the critical importance of the cooperativity of hydration that is inherent in the hydrophilic and hydrophobic contributions to hydration─physics that is not well captured in additive models but somewhat better accounted for by means of a dielectric in the GB/SA approach.
Collapse
Affiliation(s)
- Rohan S Adhikari
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas77005, United States
| | - Arjun Valiya Parambathu
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware19711, United States
| | - Walter G Chapman
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas77005, United States
| | | |
Collapse
|
6
|
Heide F, Stetefeld J. A Structural Analysis of Proteinaceous Nanotube Cavities and Their Applications in Nanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4080. [PMID: 36432365 PMCID: PMC9698212 DOI: 10.3390/nano12224080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Protein nanotubes offer unique properties to the materials science field that allow them to fulfill various functions in drug delivery, biosensors and energy storage. Protein nanotubes are chemically diverse, modular, biodegradable and nontoxic. Furthermore, although the initial design or repurposing of such nanotubes is highly complex, the field has matured to understand underlying chemical and physical properties to a point where applications are successfully being developed. An important feature of a nanotube is its ability to bind ligands via its internal cavities. As ligands of interest vary in size, shape and chemical properties, cavities have to be able to accommodate very specific features. As such, understanding cavities on a structural level is essential for their effective application. The objective of this review is to present the chemical and physical diversity of protein nanotube cavities and highlight their potential applications in materials science, specifically in biotechnology.
Collapse
Affiliation(s)
- Fabian Heide
- Correspondence: (F.H.); (J.S.); Tel.: +1-(204)-332-0853 (F.H.); +1-(204)-474-9731 (J.S.)
| | - Jörg Stetefeld
- Correspondence: (F.H.); (J.S.); Tel.: +1-(204)-332-0853 (F.H.); +1-(204)-474-9731 (J.S.)
| |
Collapse
|
7
|
Pal S, Banerjee S, Prabhakaran EN. α-Helices propagating from stable nucleators exhibit unconventional thermal folding. FEBS Lett 2021; 595:2942-2949. [PMID: 34716991 DOI: 10.1002/1873-3468.14216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/07/2022]
Abstract
Although the effect of thermal perturbations on protein structure has long been modeled in helical peptides, several details, such as the relation between the thermal stabilities of the propagating and nucleating segments of helices, remain elusive. We had earlier reported on the helix-nucleating propensities of covalent H-bond surrogate-constrained α-turns. Here, we analyze the thermal stabilities of helices that propagate along peptides appended to these α-helix nucleators using their NMR and far-UV CD spectra. Unconventional thermal folding of these helix models reveals that the helical fold in propagating backbones resists thermal perturbations as long as their nucleating template is intact. The threshold temperature of such resistance is also influenced by the extent of similarity between the natures of helical folds in the nucleating and propagating segments. Correlations between helicities and rigidities of helix-nucleating and helix-propagating segments reveal subtle interdependence, which explains cooperativity and residual helix formation during protein folding.
Collapse
Affiliation(s)
- Sunit Pal
- Department of Chemistry, Indian Institute of Science, Bangalore, India
| | - Shreya Banerjee
- Department of Chemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
8
|
Wang S, Sun Y, Xu S, Liu H. Novel Peptide-Polymer Conjugate with pH-Responsive Targeting/Disrupting Effects on Biomembranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8840-8846. [PMID: 34264682 DOI: 10.1021/acs.langmuir.1c01238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conjugating polymers to peptides has become a new strategy of designing functional antitumor agents for their improved stability and enhanced activity. In this paper, a novel peptide-polymer conjugate PEPc-PMAA with pH responsiveness was designed and synthesized. The isoelectric point of PEPc was studied by dynamic light scattering for the targeting effect. Also, the transmittances of PMAA at different pHs were measured using an ultraviolet-visible spectrophotometer for determining the triggering pH of the disrupting effect. The results showed that PEPc-PMAA was hydrophilic under neutral conditions and changed to be amphiphilic composed of positively charged PEPc and hydrophobic PMAA under acidic conditions. The interactions between PEPc-PMAA and mimic cells were investigated by the measurements of membrane fluidity and cargo leakage from 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine and 1,2-dipalmitoyl-sn-glycerol-3-phospho-(1-rac-glycerol) (DPPG) liposomes. It proved that PEPc-PMAA caused a distinct membrane disturbance of the DPPG liposome at pH 5.5, resulting in more serious cargo leakage. Because of its targeting and disrupting effects on negatively charged biomembranes under acidic conditions, PEPc-PMAA showed its good potential as an antitumor agent.
Collapse
Affiliation(s)
- Sijia Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Yue Sun
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Shouhong Xu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
9
|
Asthagiri DN, Paulaitis ME, Pratt LR. Thermodynamics of Hydration from the Perspective of the Molecular Quasichemical Theory of Solutions. J Phys Chem B 2021; 125:8294-8304. [PMID: 34313434 DOI: 10.1021/acs.jpcb.1c04182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The quasichemical organization of the potential distribution theorem, molecular quasichemical theory (QCT), enables practical calculations and also provides a conceptual framework for molecular hydration phenomena. QCT can be viewed from multiple perspectives: (a) as a way to regularize an ill-conditioned statistical thermodynamic problem; (b) as an introduction of and emphasis on the neighborship characteristics of a solute of interest; or (c) as a way to include accurate electronic structure descriptions of near-neighbor interactions in defensible statistical thermodynamics by clearly defining neighborship clusters. The theory has been applied to solutes of a wide range of chemical complexity, ranging from ions that interact with water with both long-ranged and chemically intricate short-ranged interactions, to solutes that interact with water solely through traditional van der Waals interations, and including water itself. The solutes range in variety from monatomic ions to chemically heterogeneous macromolecules. A notable feature of QCT is that, in applying the theory to this range of solutes, the theory itself provides guidance on the necessary approximations and simplifications that can facilitate the calculations. In this Perspective, we develop these ideas and document them with examples that reveal the insights that can be extracted using the QCT formulation.
Collapse
Affiliation(s)
- Dilipkumar N Asthagiri
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Michael E Paulaitis
- Center for Nanomedicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Lawrence R Pratt
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
10
|
Tomar DS, Paulaitis ME, Pratt LR, Asthagiri DN. Hydrophilic Interactions Dominate the Inverse Temperature Dependence of Polypeptide Hydration Free Energies Attributed to Hydrophobicity. J Phys Chem Lett 2020; 11:9965-9970. [PMID: 33170720 DOI: 10.1021/acs.jpclett.0c02972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We address the association of the hydrophobic driving forces in protein folding with the inverse temperature dependence of protein hydration, wherein stabilizing hydration effects strengthen with increasing temperature in a physiological range. All-atom calculations of the free energy of hydration of aqueous deca-alanine conformers, holistically including backbone and side-chain interactions together, show that attractive peptide-solvent interactions and the thermal expansion of the solvent dominate the inverse temperature signatures that have been interpreted traditionally as the hydrophobic stabilization of proteins in aqueous solution. Equivalent calculations on a methane solute are also presented as a benchmark for comparison. The present study calls for a reassessment of the forces that stabilize folded protein conformations in aqueous solutions and of the additivity of hydrophobic/hydrophilic contributions.
Collapse
Affiliation(s)
- Dheeraj S Tomar
- Xilio Therapeutics Inc., Waltham, Massachusetts 02451, United States
| | - Michael E Paulaitis
- Center for Nanomedicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Lawrence R Pratt
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Dilipkumar N Asthagiri
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
11
|
Asthagiri D, Tomar DS. System Size Dependence of Hydration-Shell Occupancy and Its Implications for Assessing the Hydrophobic and Hydrophilic Contributions to Hydration. J Phys Chem B 2020; 124:798-806. [DOI: 10.1021/acs.jpcb.9b11200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Dilipkumar Asthagiri
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | | |
Collapse
|
12
|
Bhattacharya S, Xu L, Thompson D. Molecular Simulations Reveal Terminal Group Mediated Stabilization of Helical Conformers in Both Amyloid-β42 and α-Synuclein. ACS Chem Neurosci 2019; 10:2830-2842. [PMID: 30917651 DOI: 10.1021/acschemneuro.9b00053] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The presence of partially structured helices in natively unfolded amyloid-β42 (Aβ42) and α-synuclein (αS) has been shown to accelerate fibrillation in the onset of Alzheimer's and Parkinson's disease, respectively. At the other extreme, folded stable helical conformers have also been reported to resist amyloid formation. Recent studies indicate that amyloidogenic aggregation can be impeded using small molecules that stabilize the α-helical monomers and switch off the neurotoxic pathway. We predict a common intrapeptide route to stabilization based on the plasticity of helical conformations of Aβ42 and αS as assessed through extensive atomistic molecular dynamics (MD) computer simulations (∼36 μs) across ten distinct protein force field and water model combinations. Computed free energies and interaction maps (not obtainable from experiments alone) show that flexible terminal groups (N-terminus of Aβ42 and C-terminus of αS) show a tendency to stabilize folded helical conformations in both peptides via primary hydrophobic interactions with central hydrophobic domains, and secondary salt bridges with other domains. These interactions confer aggregation resistance by decreasing the population of partially structured helices and are absent in control simulations of complete unfolding. Computed helical stability is also significantly reduced in terminal-deleted variants. The models suggest new strategies to tackle neurodegeneration by rationally re-engineering terminal groups to optimize their predicted ability to deactivate helical monomers.
Collapse
Affiliation(s)
- Shayon Bhattacharya
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Liang Xu
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
13
|
Masutani K, Yamamori Y, Kim K, Matubayasi N. Free-energy analysis of the hydration and cosolvent effects on the β-sheet aggregation through all-atom molecular dynamics simulation. J Chem Phys 2019; 150:145101. [DOI: 10.1063/1.5088395] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Keiichi Masutani
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yu Yamamori
- Artificial Intelligence Research Center and Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto, Tokyo 135-0064, Japan
| | - Kang Kim
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
14
|
Garate JA, Bernardin A, Escalona Y, Yanez C, English NJ, Perez-Acle T. Orientational and Folding Thermodynamics via Electric Dipole Moment Restraining. J Phys Chem B 2019; 123:2599-2608. [PMID: 30831028 DOI: 10.1021/acs.jpcb.8b09374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The projection of molecular processes onto a small set of relevant descriptors, the so-called reaction coordinates or collective variables (CVs), is a technique nowadays routinely employed by the biomolecular simulation community. In this work, we implemented two CVs to manipulate the orientation (i.e., angle) (μ⃗a) and magnitude (|μ⃗|) of the electric dipole moment. In doing so, we studied the thermodynamics of water orientation under the application of external voltages and the folding of two polypeptides at zero-field conditions. The projection of the free-energy [potential of mean force (PMF)] along water orientation defined an upper limit of around 0.3 V for irrelevant thermodynamic effects. On the other hand, sufficiently strong μ⃗a restraints applied on 12-alanine (Ala12) triggered structural effects because of the alignment of local dipoles; for lower restraints, a full-body rotation is achieved. The manipulation of |μ⃗| produced strong perturbations on the secondary structure of Ala12, promoting an enhanced sampling to its configurational space. Rigorous free-energy calculations in the form of 2-D PMFs for deca-alanine showed the utility of |μ⃗| as a reaction coordinate to study folding in small α helices. As a whole, we propose that the manipulation of both components of the dipole moment, μ⃗a and |μ⃗|, provides thermodynamics insights into the structural conformation and stability of biomolecules. These new CVs are implemented in the Colvars module, available for NAMD and LAMMPS.
Collapse
Affiliation(s)
- Jose Antonio Garate
- Centro Interdisciplinario de Neurociencia de Valparaiso , Universidad de Valparaiso , Pasaje Harrington 287 , Playa Ancha, Valparaiso 2381850 , Chile
| | - Alejandro Bernardin
- Centro Interdisciplinario de Neurociencia de Valparaiso , Universidad de Valparaiso , Pasaje Harrington 287 , Playa Ancha, Valparaiso 2381850 , Chile.,Computational Biology Lab , Fundacion Ciencia & Vida , Avenida Zanartu 1482, Nunoa , Santiago 7780272 , Chile
| | - Yerko Escalona
- Institute for Molecular Modeling and Simulation , Muthgasse 18 , Vienna 1190 , Austria
| | - Carlos Yanez
- Computational Biology Lab , Fundacion Ciencia & Vida , Avenida Zanartu 1482, Nunoa , Santiago 7780272 , Chile
| | - Niall J English
- School of Chemical and Bioprocess Engineering , University College Dublin , Belfield, Dublin 4 , Ireland
| | - Tomas Perez-Acle
- Centro Interdisciplinario de Neurociencia de Valparaiso , Universidad de Valparaiso , Pasaje Harrington 287 , Playa Ancha, Valparaiso 2381850 , Chile.,Computational Biology Lab , Fundacion Ciencia & Vida , Avenida Zanartu 1482, Nunoa , Santiago 7780272 , Chile
| |
Collapse
|
15
|
Muralidharan A, Pratt LR, Chaudhari MI, Rempe SB. Quasi-Chemical Theory with Cluster Sampling from Ab Initio Molecular Dynamics: Fluoride (F -) Anion Hydration. J Phys Chem A 2018; 122:9806-9812. [PMID: 30475612 DOI: 10.1021/acs.jpca.8b08474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Accurate predictions of the hydration free energy for anions typically has been more challenging than that for cations. Hydrogen bond donation to the anion in hydrated clusters such as F(H2O) n - can lead to delicate structures. Consequently, the energy landscape contains many local minima, even for small clusters, and these minima present a challenge for computational optimization. Utilization of cluster experimental results for the free energies of gas-phase clusters shows that even though anharmonic effects are interesting they need not be of troublesome magnitudes for careful applications of quasi-chemical theory to ion hydration. Energy-optimized cluster structures for anions can leave the central ion highly exposed, and application of implicit solvation models to these structures can incur more serious errors than those for metal cations. Utilizing cluster structures sampled from ab initio molecular dynamics simulations substantially fixes those issues.
Collapse
Affiliation(s)
- A Muralidharan
- Department of Chemical and Biomolecular Engineering , Tulane University , New Orleans , Louisiana 70118 , United States
| | - L R Pratt
- Department of Chemical and Biomolecular Engineering , Tulane University , New Orleans , Louisiana 70118 , United States
| | - M I Chaudhari
- Center for Biological and Engineering Sciences , Sandia National Laboratories , Albuquerque , New Mexico 87185 , United States
| | - S B Rempe
- Center for Biological and Engineering Sciences , Sandia National Laboratories , Albuquerque , New Mexico 87185 , United States
| |
Collapse
|
16
|
Kumar S, Roffi K, Tomar DS, Cirelli D, Luksha N, Meyer D, Mitchell J, Allen MJ, Li L. Rational optimization of a monoclonal antibody for simultaneous improvements in its solution properties and biological activity. Protein Eng Des Sel 2018; 31:313-325. [PMID: 30189027 DOI: 10.1093/protein/gzy020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/26/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- Sandeep Kumar
- Biotherapeutics Bioprocess Research and Development, Pfizer Inc., 700 Chesterfield Parkway West, Chesterfield, MO, USA
| | - Kirk Roffi
- Biotherapeutics Pharmaceutical Sciences Research and Development, Pfizer Inc., 1 Burtt Road, Andover, MA, USA
| | - Dheeraj S Tomar
- Biotherapeutics Pharmaceutical Sciences Research and Development, Pfizer Inc., 700 Chesterfield Parkway West, Chesterfield, MO, USA
| | - David Cirelli
- Biotherapeutics Analytical Research and Development, Pfizer Inc., 1 Burtt Road, Andover, MA, USA
| | - Nicholas Luksha
- Biotherapeutics Pharmaceutical Sciences Research and Development, Pfizer Inc., 700 Chesterfield Parkway West, Chesterfield, MO, USA
| | - Danielle Meyer
- Biotherapeutics Bioprocess Research and Development, Pfizer Inc., 700 Chesterfield Parkway West, Chesterfield, MO, USA
| | - Jeffrey Mitchell
- Biotherapeutics Bioprocess Research and Development, Pfizer Inc., 1 Burtt Road, Andover, MA, USA
| | - Martin J Allen
- Biotherapeutics Bioprocess Research and Development, Pfizer Inc., 700 Chesterfield Parkway West, Chesterfield, MO, USA
| | - Li Li
- Biotherapeutics Pharmaceutical Sciences Research and Development, Pfizer Inc., 1 Burtt Road, Andover, MA, USA
| |
Collapse
|
17
|
Tomar DS, Ramesh N, Asthagiri D. Solvophobic and solvophilic contributions in the water-to-aqueous guanidinium chloride transfer free energy of model peptides. J Chem Phys 2018; 148:222822. [DOI: 10.1063/1.5022465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Dheeraj S. Tomar
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21208, USA
| | - Niral Ramesh
- Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, USA
| | - D. Asthagiri
- Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, USA
| |
Collapse
|
18
|
Chaudhari MI, Rempe SB, Pratt LR. Quasi-chemical theory of F -(aq): The "no split occupancies rule" revisited. J Chem Phys 2018; 147:161728. [PMID: 29096480 DOI: 10.1063/1.4986244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We use ab initio molecular dynamics (AIMD) calculations and quasi-chemical theory (QCT) to study the inner-shell structure of F-(aq) and to evaluate that single-ion free energy under standard conditions. Following the "no split occupancies" rule, QCT calculations yield a free energy value of -101 kcal/mol under these conditions, in encouraging agreement with tabulated values (-111 kcal/mol). The AIMD calculations served only to guide the definition of an effective inner-shell constraint. QCT naturally includes quantum mechanical effects that can be concerning in more primitive calculations, including electronic polarizability and induction, electron density transfer, electron correlation, molecular/atomic cooperative interactions generally, molecular flexibility, and zero-point motion. No direct assessment of the contribution of dispersion contributions to the internal energies has been attempted here, however. We anticipate that other aqueous halide ions might be treated successfully with QCT, provided that the structure of the underlying statistical mechanical theory is absorbed, i.e., that the "no split occupancies" rule is recognized.
Collapse
Affiliation(s)
- Mangesh I Chaudhari
- Center for Biological and Engineering Sciences, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Susan B Rempe
- Center for Biological and Engineering Sciences, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Lawrence R Pratt
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, USA
| |
Collapse
|
19
|
Gao A, Tan L, Chaudhari MI, Asthagiri D, Pratt LR, Rempe SB, Weeks JD. Role of Solute Attractive Forces in the Atomic-Scale Theory of Hydrophobic Effects. J Phys Chem B 2018; 122:6272-6276. [DOI: 10.1021/acs.jpcb.8b01711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ang Gao
- Institute for Physical Science and Technology, and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Liang Tan
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Mangesh I. Chaudhari
- Center for Biological and Engineering Sciences, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - D. Asthagiri
- Chemical and Biomolecular Engineering Rice University, Houston, Texas 77005, United States
| | - Lawrence R. Pratt
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Susan B. Rempe
- Center for Biological and Engineering Sciences, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - John D. Weeks
- Institute for Physical Science and Technology, and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
20
|
Asthagiri D, Karandur D, Tomar DS, Pettitt BM. Intramolecular Interactions Overcome Hydration to Drive the Collapse Transition of Gly 15. J Phys Chem B 2017; 121:8078-8084. [PMID: 28774177 DOI: 10.1021/acs.jpcb.7b05469] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Simulations and experiments show oligo-glycines, polypeptides lacking any side chains, can collapse in water. We assess the hydration thermodynamics of this collapse by calculating the hydration free energy at each of the end points of the reaction coordinate, here taken as the end-to-end distance (r) in the chain. To examine the role of the various conformations for a given r, we study the conditional distribution, P(Rg|r), of the radius of gyration for a given value of r. The free energy change versus Rg, -kBT ln P(Rg|r), is found to vary more gently compared to the corresponding variation in the excess hydration free energy. Using this observation within a multistate generalization of the potential distribution theorem, we calculate a tight upper bound for the hydration free energy of the peptide for a given r. On this basis, we find that peptide hydration greatly favors the expanded state of the chain, despite primitive hydrophobic effects favoring chain collapse. The net free energy of collapse is seen to be a delicate balance between opposing intrapeptide and hydration effects, with intrapeptide contributions favoring collapse.
Collapse
Affiliation(s)
- D Asthagiri
- Department of Chemical and Biomolecular Engineering, Rice University , Houston, Texas, United States.,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch , Galveston, Texas, United States
| | - Deepti Karandur
- Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine , Houston, Texas, United States
| | - Dheeraj S Tomar
- Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland, United States
| | - B Montgomery Pettitt
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch , Galveston, Texas, United States.,Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine , Houston, Texas, United States
| |
Collapse
|
21
|
Drake JA, Harris RC, Pettitt BM. Solvation Thermodynamics of Oligoglycine with Respect to Chain Length and Flexibility. Biophys J 2017; 111:756-767. [PMID: 27558719 DOI: 10.1016/j.bpj.2016.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 01/24/2023] Open
Abstract
Oligoglycine is a backbone mimic for all proteins and is prevalent in the sequences of intrinsically disordered proteins. We have computed the absolute chemical potential of glycine oligomers at infinite dilution by simulation with the CHARMM36 and Amber ff12SB force fields. We performed a thermodynamic decomposition of the solvation free energy (ΔG(sol)) of Gly2-5 into enthalpic (ΔH(sol)) and entropic (ΔS(sol)) components as well as their van der Waals and electrostatic contributions. Gly2-5 was either constrained to a rigid/extended conformation or allowed to be completely flexible during simulations to assess the effects of flexibility on these thermodynamic quantities. For both rigid and flexible oligoglycine models, the decrease in ΔG(sol) with chain length is enthalpically driven with only weak entropic compensation. However, the apparent rates of decrease of ΔG(sol), ΔH(sol), ΔS(sol), and their elec and vdw components differ for the rigid and flexible models. Thus, we find solvation entropy does not drive aggregation for this system and may not explain the collapse of long oligoglycines. Additionally, both force fields yield very similar thermodynamic scaling relationships with respect to chain length despite both force fields generating different conformational ensembles of various oligoglycine chains.
Collapse
Affiliation(s)
- Justin A Drake
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| | - Robert C Harris
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania
| | - B Montgomery Pettitt
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas.
| |
Collapse
|
22
|
Woldeyes MA, Calero-Rubio C, Furst EM, Roberts CJ. Predicting Protein Interactions of Concentrated Globular Protein Solutions Using Colloidal Models. J Phys Chem B 2017; 121:4756-4767. [DOI: 10.1021/acs.jpcb.7b02183] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mahlet A. Woldeyes
- Department of Chemical and
Biomolecular Engineering. University of Delaware, Newark, Delaware 19716, United States
| | - Cesar Calero-Rubio
- Department of Chemical and
Biomolecular Engineering. University of Delaware, Newark, Delaware 19716, United States
| | - Eric M. Furst
- Department of Chemical and
Biomolecular Engineering. University of Delaware, Newark, Delaware 19716, United States
| | - Christopher J. Roberts
- Department of Chemical and
Biomolecular Engineering. University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
23
|
Palazzesi F, Salvalaglio M, Barducci A, Parrinello M. Communication: Role of explicit water models in the helix folding/unfolding processes. J Chem Phys 2016; 145:121101. [DOI: 10.1063/1.4963340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ferruccio Palazzesi
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, 8093 Zurich, Switzerland
- Facoltá di Informatica, Istituto di Scienze Computazionali, Universitá della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Matteo Salvalaglio
- Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Alessandro Barducci
- Inserm, U1054 Montpellier, France
- Université de Montpellier, CNRS, UMR 5048, Centre de Biochimie Structurale, Montpellier, France
| | - Michele Parrinello
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, 8093 Zurich, Switzerland
- Facoltá di Informatica, Istituto di Scienze Computazionali, Universitá della Svizzera Italiana, 6900 Lugano, Switzerland
| |
Collapse
|
24
|
Calero-Rubio C, Paik B, Jia X, Kiick KL, Roberts CJ. Predicting unfolding thermodynamics and stable intermediates for alanine-rich helical peptides with the aid of coarse-grained molecular simulation. Biophys Chem 2016; 217:8-19. [PMID: 27486699 DOI: 10.1016/j.bpc.2016.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/14/2016] [Accepted: 07/17/2016] [Indexed: 10/21/2022]
Abstract
This report focuses on the molecular-level processes and thermodynamics of unfolding of a series of helical peptides using a coarse-grained (CG) molecular model. The CG model was refined to capture thermodynamics and structural changes as a function of temperature for a set of published peptide sequences. Circular dichroism spectroscopy (CD) was used to experimentally monitor the temperature-dependent conformational changes and stability of published peptides and new sequences introduced here. The model predictions were quantitatively or semi-quantitatively accurate in all cases. The simulations and CD results showed that, as expected, in most cases the unfolding of helical peptides is well described by a simply 2-state model, and conformational stability increased with increased length of the helices. A notable exception in a 19-residue helix was when two Ala residues were each replaced with Phe. This stabilized a partly unfolded intermediate state via hydrophobic contacts, and also promoted aggregates at higher peptide concentrations.
Collapse
Affiliation(s)
- Cesar Calero-Rubio
- Chemical & Biomolecular Engineering Department, University of Delaware, Newark, DE 19716, United States
| | - Bradford Paik
- Material Science & Engineering Department, University of Delaware, Newark, DE 19716, United States
| | - Xinqiao Jia
- Material Science & Engineering Department, University of Delaware, Newark, DE 19716, United States
| | - Kristi L Kiick
- Material Science & Engineering Department, University of Delaware, Newark, DE 19716, United States.
| | - Christopher J Roberts
- Chemical & Biomolecular Engineering Department, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|