1
|
Sánchez-Aguinagalde O, Meaurio E, Lejardi A, Sarasua JR. Amorphous solid dispersions in poly(ε-caprolactone)/xanthohumol bioactive blends: physicochemical and mechanical characterization. J Mater Chem B 2021; 9:4219-4229. [PMID: 33998613 DOI: 10.1039/d0tb02964e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This paper reports the obtention of amorphous solid dispersions (ASDs) of xanthohumol (XH) in PCL containing up to 50 wt% of the bioactive compound in the amorphous form thanks to the advantageous specific interactions established in this system. The miscibility of the PCL/XH blends was investigated using DSC. Melting point depression analysis yielded a negative interaction parameter indicating the occurrence of favorable inter-association interactions. XRD analyses performed at room temperature agree with the crystallinity results obtained on the heating runs performed by DSC. FTIR spectroscopy reveals strong C[double bond, length as m-dash]OO-H specific interactions between the hydroxyl groups of XH and the carbonyl groups of PCL. The AFM analysis of the blends obtained by spin-coating shows the variation of crystalline morphology with composition. Finally, tensile tests reveal high toughness retention for the blends in which XH can be dispersed in the amorphous form (containing up to 50 wt% XH). In summary, PCL is a convenient matrix to disperse XH in the amorphous form, bringing the possibility of obtaining completely amorphous bioactive materials suitable for the development of non-stiff biomedical devices.
Collapse
Affiliation(s)
- Oroitz Sánchez-Aguinagalde
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, University of The Basque Country (UPV/EHU), School of Engineering I, Plaza Ingeniero Torres Quevedo 1, Bilbao, Spain.
| | - Emilio Meaurio
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, University of The Basque Country (UPV/EHU), School of Engineering I, Plaza Ingeniero Torres Quevedo 1, Bilbao, Spain.
| | - Ainhoa Lejardi
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, University of The Basque Country (UPV/EHU), School of Engineering I, Plaza Ingeniero Torres Quevedo 1, Bilbao, Spain.
| | - Jose-Ramon Sarasua
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, University of The Basque Country (UPV/EHU), School of Engineering I, Plaza Ingeniero Torres Quevedo 1, Bilbao, Spain.
| |
Collapse
|
2
|
Rohindra D, Lata R, Kuboyama K, Ougizawa T. Crystallization behavior in miscible blends of poly(ε‐caprolactone) and poly(hexylene adipate) with similar thermal properties studied by time‐resolved Fourier transform infrared spectroscopy. POLYMER CRYSTALLIZATION 2019. [DOI: 10.1002/pcr2.10037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- David Rohindra
- School of Biological and Chemical Sciences, Faculty of Science Technology and EnvironmentThe University of the South Pacific Suva Fiji
| | - Roselyn Lata
- School of Biological and Chemical Sciences, Faculty of Science Technology and EnvironmentThe University of the South Pacific Suva Fiji
| | - Keiichi Kuboyama
- Department of Materials Science and EngineeringTokyo Institute of Technology Meguro‐ku Tokyo Japan
| | - Toshiaki Ougizawa
- Department of Materials Science and EngineeringTokyo Institute of Technology Meguro‐ku Tokyo Japan
| |
Collapse
|
3
|
Lu X, Zheng K, Yang J, Zhao J. Probing the interplay between chain diffusion and polymer crystal growth under nanoscale confinement: a study by single molecule fluorescence microscopy. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
4
|
Nie WC, Xiao Q, Wu JM, Song F, Wang XL, Wang YZ. Dendritic crystallization and morphology control of random poly(p-dioxanone-co-butylene-co-succinate) copolyesters. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Sanchez-Rexach E, Meaurio E, Iturri J, Toca-Herrera JL, Nir S, Reches M, Sarasua JR. Miscibility, interactions and antimicrobial activity of poly(ε-caprolactone)/chloramphenicol blends. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Hou C, Sun X, Ren Z, Li H, Yan S. Polymorphism and Enzymatic Degradation of Poly(1,4-butylene adipate) and Its Binary Blends with Atactic Poly(3-hydroxybutyrate) and Poly(vinyl phenol). Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chunyue Hou
- State Key Laboratory of Chemical Resource
Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoli Sun
- State Key Laboratory of Chemical Resource
Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource
Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huihui Li
- State Key Laboratory of Chemical Resource
Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource
Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Pathiranage TMSK, Magurudeniya HD, Biewer MC, Stefan MC. Effect of thiophene spacers in benzodithiophene‐based polymers for organic electronics. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Harsha D. Magurudeniya
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardson Texas75080
| | - Michael C. Biewer
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardson Texas75080
| | - Mihaela C. Stefan
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardson Texas75080
| |
Collapse
|
8
|
Zhang B, Chen J, Liu B, Wang B, Shen C, Reiter R, Chen J, Reiter G. Morphological Changes of Isotactic Polypropylene Crystals Grown in Thin Films. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01381] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bin Zhang
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450002, People’s Republic of China
| | - Jiajia Chen
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450002, People’s Republic of China
| | - Baochen Liu
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450002, People’s Republic of China
| | - Binghua Wang
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450002, People’s Republic of China
| | - Changyu Shen
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450002, People’s Republic of China
| | - Renate Reiter
- Institute
of Physics and Freiburg Materials Research Center, University of Freiburg, 79104 Freiburg, Germany
| | - Jingbo Chen
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450002, People’s Republic of China
| | - Günter Reiter
- Institute
of Physics and Freiburg Materials Research Center, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
9
|
Zhang S, Ren Z, Sun X, Li H, Yan S. Effects of Composition and Melting Time on the Phase Separation of Poly(3-hydroxybutyrate)/Poly(propylene carbonate) Blend Thin Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1202-1209. [PMID: 28128568 DOI: 10.1021/acs.langmuir.6b03924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, the effect of composition and melting time on the phase separation of poly(3-hydroxybutyrate)/poly(propylene carbonate) (PHB/PPC) blend thin films was investigated. Optical microscopy under phase contrast confirms the occurrence of phase separation of PHB/PPC blends at 190 °C. Polarized optical and scanning electron microscopies (POM and SEM) demonstrate that phase separation takes place along both horizontal and vertical film planes, which should be attributed to the two different interfaces and immiscible blends. A low PPC content (e.g. 30 wt %) results in the formation of compact PHB spherulites filling the whole space, whereas the noncrystallizable PPC spherical microdomains scatter in the PHB region, and their size shows a remarkable melting-time dependence. With the increasing PPC component and melting time, it is observed from POM that the separated PHB domains scattered in the continuous PPC phase, like the island structure. However, it can be revealed by SEM micrographs that the PHB thick domains are actually connected by its thin layer under the PPC layer. The real situation is, therefore, a large amount of PPC aggregates to the surface to form a network uplayer, whereas the PHB thick domains connected by its thin layer form a continuous PHB region, leading to a superimposed bilayer structure. There is also a small amount of PHB small domains scattered in the PHB phase. The PHB thick domains crystallize cooperatively with the PHB- or PHB-rich sublayer in a way just like the growth of pure PHB spherulites. This superimposed bilayer by interplay between phase separation and crystallization may provide availability to tailor the final structure and properties of crystalline/amorphous polymer blends.
Collapse
Affiliation(s)
- Shujing Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Xiaoli Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Huihui Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| |
Collapse
|
10
|
Chen Y, Gan T, Ma C, Wang L, Zhang G. Crystallization of Polymer Chains Chemically Attached on a Surface: Lamellar Orientation from Flat-on to Edge-on. J Phys Chem B 2016; 120:4715-22. [DOI: 10.1021/acs.jpcb.6b02344] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yihuang Chen
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Tiansheng Gan
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chunfeng Ma
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Linge Wang
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guangzhao Zhang
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|