1
|
Zhao Y, Tian F, Sun Z. Ab initio deep neural network simulations reveal that carbonic acid dissociation is dominated by minority cis-trans conformers. SCIENCE ADVANCES 2025; 11:eadu6525. [PMID: 40333980 PMCID: PMC12057677 DOI: 10.1126/sciadv.adu6525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/02/2025] [Indexed: 05/09/2025]
Abstract
Carbonic acid (H2CO3), rather than water, serves as the primary protonating buffer regulating pH in biological systems and oceans. Its dissociation dynamics, driven by three conformers-cis-cis (CC), cis-trans (CT), and trans-trans (TT)-pose substantial experimental and theoretical challenges. Using deep potential molecular dynamics simulations with ab initio accuracy, we explored the dissociation dynamics of H2CO3 in solution on the nanosecond timescale. While the CC conformer is the most abundant, the CT conformer is the dominant proton donor. This enhanced deprotonation ability arises from the CT conformer's involvement in more hydrogen-bonding ring structures, enabling diverse proton transfer pathways, and its greater electronic asymmetry, which increases hydrophilicity and destabilizes the hydroxyl group. Furthermore, protons dissociated from the CT conformer demonstrate a stronger preference for the homing pathway. Our findings underscore the critical role of the topology and electronic properties of the CT conformer in aqueous H2CO3 dissociation and proton transfer.
Collapse
Affiliation(s)
- Yueqi Zhao
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Feifei Tian
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Zhaoru Sun
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| |
Collapse
|
2
|
Kiefer PM, Daschakraborty S, Pines D, Pines E, Hynes JT. Electron Flow Characterization of Charge Transfer for Carbonic Acid to Strong Base Proton Transfer in Aqueous Solution. J Phys Chem B 2021; 125:11473-11490. [PMID: 34623157 DOI: 10.1021/acs.jpcb.1c05824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protonation of the strong base methylamine CH3NH2 by carbonic acid H2CO3 in aqueous solution, HOCOOH···NH2CH3 → HOCOO-···+HNH2CH3, has been previously studied ( J. Phys. Chem. B 2016, 109, 2271-2280; J. Phys. Chem. B 2016, 109, 2281-2290) via Car-Parinnello molecular dynamics. This proton transfer (PT) reaction within a hydrogen (H)-bonded complex was found to be barrierless and very rapid, with key reaction coordinates comprising the proton coordinate, the H-bond separation RON, and a solvent coordinate, reflecting the water solvent rearrangement involved in the neutral to ion pair conversion. In the present work, the reaction's charge flow aspects are analyzed in detail, especially a description via Mulliken charge transfer for PT (MCTPT). A natural bond orbital analysis and some extensions of them are employed for the complex's electronic structure during the reaction trajectories. Results demonstrate that consistent with the MCTPT picture, the charge transfer (CT) occurs from a methylamine base nonbonding orbital to a carbonic acid antibonding orbital. A complementary MCTPT reaction product perspective of CT from the antibonding orbital of the HN+ moiety to the nonbonding orbital of the oxygen in the H-bond complex is also presented. σOH and σHN+ bond order expressions show this CT to occur within the H-bond OHN triad, an aspect key for simultaneous bond-breaking and -forming in the PT reaction.
Collapse
Affiliation(s)
- Philip M Kiefer
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Snehasis Daschakraborty
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Dina Pines
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Ehud Pines
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - James T Hynes
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States.,PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
3
|
Abstract
CO2, HCO3-, and CO32- are present in all aqueous media at pH > 4 if no major effort is made to remove them. Usually the presence of CO2/HCO3-/CO32- is either forgotten or considered only as a buffer or proton transfer catalyst. Results obtained in the last decades point out that carbonates are key participants in a variety of oxidation processes. This was first attributed to the formation of carbonate anion radicals via the reaction OH• + CO32- → CO3•- + OH-. However, recent studies point out that the involvement of carbonates in oxidation processes is more fundamental. Thus, the presence of HCO3-/CO32- changes the mechanisms of Fenton and Fenton-like reactions to yield CO3•- directly even at very low HCO3-/CO32- concentrations. CO3•- is a considerably weaker oxidizing agent than the hydroxyl radical and therefore a considerably more selective oxidizing agent. This requires reconsideration of the sources of oxidative stress in biological systems and might explain the selective damage induced during oxidative stress. The lower oxidation potential of CO3•- probably also explains why not all pollutants are eliminated in many advanced oxidation technologies and requires rethinking of the optimal choice of the technologies applied. The role of percarbonate in Fenton-like processes and in advanced oxidation processes is discussed and has to be re-evaluated. Carbonate as a ligand stabilizes transition metal complexes in uncommon high oxidation states. These high-valent complexes are intermediates in electrochemical water oxidation processes that are of importance in the development of new water splitting technologies. HCO3- and CO32- are also very good hole scavengers in photochemical processes of semiconductors and may thus become key participants in the development of new processes for solar energy conversion. In this Account, an attempt to correlate these observations with the properties of carbonates is made. Clearly, further studies are essential to fully uncover the potential of HCO3-/CO32- in desired oxidation processes.
Collapse
Affiliation(s)
- Shanti Gopal Patra
- Department of Chemical Sciences, The Center for Radical Reactions and the Schlesinger Family Center for Compact Accelerators, Radiation Sources and Applications, Ariel University, Ramat HaGolan Street, Ariel 40700, Israel
| | - Amir Mizrahi
- Department of Chemistry, Nuclear Research Centre Negev, Beer-Sheva 84190, Israel
| | - Dan Meyerstein
- Department of Chemical Sciences, The Center for Radical Reactions and the Schlesinger Family Center for Compact Accelerators, Radiation Sources and Applications, Ariel University, Ramat HaGolan Street, Ariel 40700, Israel
- Department of Chemistry, Ben-Gurion University, Beer-Sheva 8410501, Israel
| |
Collapse
|
4
|
Verma P, Rosspeintner A, Dereka B, Vauthey E, Kumpulainen T. Broadband fluorescence reveals mechanistic differences in excited-state proton transfer to protic and aprotic solvents. Chem Sci 2020; 11:7963-7971. [PMID: 34094165 PMCID: PMC8163259 DOI: 10.1039/d0sc03316b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Excited-state proton transfer (ESPT) to solvent is often explained according to the two-step Eigen-Weller model including a contact ion pair (CIP*) as an intermediate, but general applicability of the model has not been thoroughly examined. Furthermore, examples of the spectral identification of CIP* are scarce. Here, we report on a detailed investigation of ESPT to protic (H2O, D2O, MeOH and EtOH) and aprotic (DMSO) solvents utilizing a broadband fluorescence technique with sub-200 fs time resolution. The time-resolved spectra are decomposed into contributions from the protonated and deprotonated species and a clear signature of CIP* is identified in DMSO and MeOH. Interestingly, the CIP* intermediate is not observable in aqueous environment although the dynamics in all solvents are multi-exponential. Global analysis based on the Eigen-Weller model is satisfactory in all solvents, but the marked mechanistic differences between aqueous and organic solvents cast doubt on the physical validity of the rate constants obtained.
Collapse
Affiliation(s)
- Pragya Verma
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland +41 22 379 65 18 +41 22 379 36 58
| | - Arnulf Rosspeintner
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland +41 22 379 65 18 +41 22 379 36 58
| | - Bogdan Dereka
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland +41 22 379 65 18 +41 22 379 36 58
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland +41 22 379 65 18 +41 22 379 36 58
| | - Tatu Kumpulainen
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland +41 22 379 65 18 +41 22 379 36 58
| |
Collapse
|
5
|
Aminov D, Pines D, Kiefer PM, Daschakraborty S, Hynes JT, Pines E. Intact carbonic acid is a viable protonating agent for biological bases. Proc Natl Acad Sci U S A 2019; 116:20837-20843. [PMID: 31570591 PMCID: PMC6800339 DOI: 10.1073/pnas.1909498116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Carbonic acid H2CO3 (CA) is a key constituent of the universal CA/bicarbonate/CO2 buffer maintaining the pH of both blood and the oceans. Here we demonstrate the ability of intact CA to quantitatively protonate bases with biologically-relevant pKas and argue that CA has a previously unappreciated function as a major source of protons in blood plasma. We determine with high precision the temperature dependence of pKa(CA), pKa(T) = -373.604 + 16,500/T + 56.478 ln T. At physiological-like conditions pKa(CA) = 3.45 (I = 0.15 M, 37 °C), making CA stronger than lactic acid. We further demonstrate experimentally that CA decomposition to H2O and CO2 does not impair its ability to act as an ordinary carboxylic acid and to efficiently protonate physiological-like bases. The consequences of this conclusion are far reaching for human physiology and marine biology. While CA is somewhat less reactive than (H+)aq, it is more than 1 order of magnitude more abundant than (H+)aq in the blood plasma and in the oceans. In particular, CA is about 70× more abundant than (H+)aq in the blood plasma, where we argue that its overall protonation efficiency is 10 to 20× greater than that of (H+)aq, often considered to be the major protonating agent there. CA should thus function as a major source for fast in vivo acid-base reactivity in the blood plasma, possibly penetrating intact into membranes and significantly helping to compensate for (H+)aq's kinetic deficiency in sustaining the large proton fluxes that are vital for metabolic processes and rapid enzymatic reactions.
Collapse
Affiliation(s)
- Daniel Aminov
- Department of Chemistry, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Dina Pines
- Department of Chemistry, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Philip M Kiefer
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309-0215
| | | | - James T Hynes
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309-0215;
- PASTEUR, Départmente de Chimie, Ecole Normale Supérieure, PSL Research University, Sorbonne Université, UPMC Université Paris 06, CNRS, 75005 Paris, France
| | - Ehud Pines
- Department of Chemistry, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel;
| |
Collapse
|
6
|
Varadwaj PR, Varadwaj A, Marques HM. C 70 Fullerene Cage as a Novel Catalyst for Efficient Proton Transfer Reactions between Small Molecules: A Theoretical study. Sci Rep 2019; 9:10650. [PMID: 31337790 PMCID: PMC6650427 DOI: 10.1038/s41598-019-46725-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/02/2019] [Indexed: 11/12/2022] Open
Abstract
When acids are supplied with an excess electron (or placed in an Ar or the more polarizable N2 matrix) in the presence of species such as NH3, the formation of ion-pairs is a likely outcome. Using density functional theory and first-principles calculations, however, we show that, without supplying an external electron or an electric field, or introducing photo-excitation and -ionization, a single molecule of HCl or HBr in the presence of a single molecule of water inside a C70 fullerene cage is susceptible to cleavage of the σ-bond of the Brønsted-Lowry acid into X− and H+ ions, with concomitant transfer of the proton along the reaction coordinate. This leads to the formation of an X−···+HOH2 (X = Cl, Br) conjugate acid-base ion-pair, similar to the structure in water of a Zundel ion. This process is unlikely to occur in other fullerene derivatives in the presence of H2O without significantly affecting the geometry of the carbon cage, suggesting that the interior of C70 is an ideal catalytic platform for proton transfer reactions and the design of related novel materials. By contrast, when a single molecule of HF is reacted with a single molecule of H2O inside the C70 cage, partial proton transfers from HF to H2O is an immediate consequence, as recently observed experimentally. The geometrical, energetic, electron density, orbital, optoelectronic and vibrational characteristics supporting these observations are presented. In contrast with the views that have been advanced in several recent studies, we show that the encaged species experiences significant non-covalent interaction with the interior of the cage. We also show that the inability of current experiments to detect many infrared active vibrational bands of the endo species in these systems is likely to be a consequence of the substantial electrostatic screening effect of the cage.
Collapse
Affiliation(s)
- Pradeep R Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, 113-8656, Japan. .,The National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8560, Japan.
| | - Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, 113-8656, Japan. .,The National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8560, Japan.
| | - Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| |
Collapse
|
7
|
Thomas DA, Mucha E, Lettow M, Meijer G, Rossi M, von Helden G. Characterization of a trans-trans Carbonic Acid-Fluoride Complex by Infrared Action Spectroscopy in Helium Nanodroplets. J Am Chem Soc 2019; 141:5815-5823. [PMID: 30883095 PMCID: PMC6727381 DOI: 10.1021/jacs.8b13542] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
The high Lewis basicity
and small ionic radius of fluoride promote
the formation of strong ionic hydrogen bonds in the complexation of
fluoride with protic molecules. Herein, we report that carbonic acid,
a thermodynamically disfavored species that is challenging to investigate
experimentally, forms a complex with fluoride in the gas phase. Intriguingly,
this complex is highly stable and is observed in abundance upon nanoelectrospray
ionization of an aqueous sodium fluoride solution in the presence
of gas-phase carbon dioxide. We characterize the structure and properties
of the carbonic acid–fluoride complex, F–(H2CO3), and its deuterated isotopologue, F–(D2CO3), by helium nanodroplet
infrared action spectroscopy in the photon energy range of 390–2800
cm–1. The complex adopts a C2v symmetry structure with the carbonic acid
in a planar trans–trans conformation and both OH groups forming
ionic hydrogen bonds with the fluoride. Substantial vibrational anharmonic
effects are observed in the infrared spectra, most notably a strong
blue shift of the symmetric hydrogen stretching fundamental relative
to predictions from the harmonic approximation or vibrational second-order
perturbation theory. Ab initio thermostated ring-polymer molecular
dynamics simulations indicate that this blue shift originates from
strong coupling between the hydrogen stretching and bending vibrations,
resulting in an effective weakening of the OH···F– ionic hydrogen bonds.
Collapse
Affiliation(s)
- Daniel A Thomas
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany
| | - Eike Mucha
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany
| | - Maike Lettow
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany
| | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany
| | - Mariana Rossi
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany
| |
Collapse
|
8
|
Sun CQ. Unprecedented O:⇔:O compression and H↔H fragilization in Lewis solutions. Phys Chem Chem Phys 2019; 21:2234-2250. [PMID: 30656293 DOI: 10.1039/c8cp06910g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Charge injection in terms of lone pairs ':', protons, and ions upon acid and base solvation mediates the hydrogen bonding network and properties of Lewis solutions, and is ubiquitously important in many subject areas of Chemical Physics. This work features the recent progress and future trends in this aspect with a focus on the solute-solvent interactions and hydrogen bond (O:H-O or HB) transition from the vibration mode of ordinary water to the hydrating states. A combination of the O:H-O bond cooperativity notion, differential phonon spectrometrics, calorimetric detection, and quantum computations clarified the solute capabilities of O:H-O bond transition in HX and YOH (X = Cl, Br, I and Y = Li, Na, K) solutions. The H+ and the lone pair do not stay alone to move or shuttle freely between adjacent H2O molecules, but they are attached to a H2O molecule to form (H3O+ and OH-)·4H2O tetrahedral motifs, which transits an O:H-O bond into the H↔H anti-HB point breaker in acidic solutions and into the O:⇔:O super-HB compressor and polarizer in basic solutions, respectively. H↔H disrupts the solvent network and surface stress, having the same effect of liquid heating on HB bond relaxation and thermal fluctuation on surface stress. The O:⇔:O compression lengthens and weakens the solute H-O bond, which heats up the solution during solvation. The H-O bonds due to H3O+ contract by 3% and due to OH- shrink by 10%. The Y+ and X- ions perform in the same manner as they do in salt solutions to form hydration shells through electrostatic polarization and hydrating H2O dipolar screen shielding. Focusing more on the O:H-O bond transition would be even more promising and revealing than on the manner and mobility of lone pair and proton transportation.
Collapse
Affiliation(s)
- Chang Q Sun
- EBEAM, Yangtze Normal University, Chongqing 408100, China.
| |
Collapse
|
9
|
Aminov D, Pines D, Philip MK, Daschakraborty S, James TH, Pines E. Can carbonic acid protonate biological bases? Support from base protonation in methanol solvent. EPJ WEB OF CONFERENCES 2019. [DOI: 10.1051/epjconf/201920509005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In separate contributions, we have focussed on demonstrating that carbonic acid (CA) - historically considered too unstable to be a viable protonating agent - is able to protonate several types of pH indicators while behaving as a regular, moderately strong, carboxylic acid. Together with the experimental support we found for considering CA as a regular carboxylic acid are theoretical calculations demonstrating CA’s ability to protonate methylamine within 25 fs when forming with it a contact reactive complex. Here we briefly discuss a further aspect of this focus, involving the measurement of the lifetime and pKa of CA in pure methanol. The lifetime in methanol was found to be about 12-fold longer than in water, showing that the decomposition reaction of CA is solvent-dependent. The pKa change upon transferring CA from water to methanol was found to be 4.7 ± 0.1 pKa units, changing from 3.49 ± 0.03 to 8.16 ± 0.05: this change is similar to the pKa change observed for common stable carboxylic acids when these are transferred from water to methanol. These results add further support of our earlier proposal that CA can be an important protonating agent of biological bases in the blood plasma.
Collapse
|
10
|
Sun CQ. Aqueous charge injection: solvation bonding dynamics, molecular nonbond interactions, and extraordinary solute capabilities. INT REV PHYS CHEM 2018. [DOI: 10.1080/0144235x.2018.1544446] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chang Q. Sun
- EBEAM, Yangtze Normal University, Chongqing, People's Republic of China
- NOVITAS, EEE, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
11
|
Anharmonic vibrational spectroscopy calculations using the ab initio CSP method: Applications to H2CO3, (H2CO3)2, H2CO3-H2O and isotopologues. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2017.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Dubey V, Kumar N, Daschakraborty S. Importance of Solvents’ Translational–Rotational Coupling for Translational Jump of a Small Hydrophobic Solute in Supercooled Water. J Phys Chem B 2018; 122:7569-7583. [DOI: 10.1021/acs.jpcb.8b03177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vikas Dubey
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| | - Nitesh Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| | | |
Collapse
|
13
|
Chen YH, Sung R, Sung K. Insights into Excited State Intramolecular Proton Transfer: An Alternative Model for Excited State Proton Transfer of Green Fluorescence Protein. J Phys Chem A 2018; 122:5931-5944. [DOI: 10.1021/acs.jpca.8b01799] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yi-Hui Chen
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Robert Sung
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Kuangsen Sung
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
14
|
Takatsuka K. Theory of molecular nonadiabatic electron dynamics in condensed phases. J Chem Phys 2017; 147:174102. [DOI: 10.1063/1.4993240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
15
|
Indra S, Daschakraborty S. Mechanism of translational jump of a hydrophobic solute in supercooled water: Importance of presolvation. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.07.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Zakai I, Varner ME, Gerber RB. Concerted transfer of multiple protons in acid-water clusters: [(HCl)(H 2O)] 2 and [(HF)(H 2O)] 4. Phys Chem Chem Phys 2017; 19:20641-20646. [PMID: 28737803 DOI: 10.1039/c7cp04006g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular dynamics simulations using directly ab initio potentials are carried out for the ionically bonded clusters [(Cl-)(H3O+)]2 and [(F-)(H3O+)]4 to explore their transitions to the hydrogen-bonded [(HCl)(H2O)]2 and [(HF)(H2O)]4 structures during the first picosecond of simulation. Both the ionic and the H-bonded structures that are formed are highly symmetric. It is found that proton transfers are concerted in all trajectories for [(Cl-)(H3O+)]2. For [(F-)(H3O+)]4, the fully concerted mechanism is dominant but partially concerted transfers of two or three protons at the same time also occur. The concerted mechanism also holds for the reverse process of ionization of neutral acid molecules. It is suggested that the high symmetry of the ionic and the H-bonded structures plays a role in the preference for concerted transfers. Possible implications of the results for proton transfers in other systems are discussed.
Collapse
Affiliation(s)
- I Zakai
- Institute of Chemistry and The Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel
| | | | | |
Collapse
|
17
|
Zhang X, Zhou Y, Gong Y, Huang Y, Sun C. Resolving H(Cl, Br, I) capabilities of transforming solution hydrogen-bond and surface-stress. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.04.060] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Hirshberg B, Gerber RB. Formation of Carbonic Acid in Impact of CO2 on Ice and Water. J Phys Chem Lett 2016; 7:2905-2909. [PMID: 27420400 DOI: 10.1021/acs.jpclett.6b01109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A new mode of formation is proposed for carbonic acid in the atmosphere. It involves impact of vibrationally excited gas-phase CO2 molecules on water or ice particles. This is a first mechanism that supports formation on ice as well as on liquid water surfaces. Results of ab initio molecular dynamics simulations are presented on collisions of CO2 with (H2O)n clusters (n = 1, 4, 8, 12). Efficient formation of carbonic acid is seen with product lifetimes exceeding 100 ps. The reaction is feasible even for collision of CO2 with a single water molecule but in a different mechanism than for larger clusters. For clusters, the transition state shows charge separation into H3O(+)···HCO3(-), which transforms into neutral carbonic acid as the product, hydrated by the remaining waters. Possible atmospheric implications of the results are discussed.
Collapse
Affiliation(s)
- Barak Hirshberg
- Institute of Chemistry and the Fritz-Haber center for Molecular Dynamics, The Hebrew University , Jerusalem 9190401, Israel
| | - R Benny Gerber
- Institute of Chemistry and the Fritz-Haber center for Molecular Dynamics, The Hebrew University , Jerusalem 9190401, Israel
- Department of Chemistry, University of California , Irvine, California 92697, United States
| |
Collapse
|
19
|
Daschakraborty S, Kiefer PM, Miller Y, Motro Y, Pines D, Pines E, Hynes JT. Reaction Mechanism for Direct Proton Transfer from Carbonic Acid to a Strong Base in Aqueous Solution II: Solvent Coordinate-Dependent Reaction Path. J Phys Chem B 2016; 120:2281-90. [PMID: 26876428 DOI: 10.1021/acs.jpcb.5b12744] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The protonation of methylamine base CH3NH2 by carbonic acid H2CO3 within a hydrogen (H)-bonded complex in aqueous solution was studied via Car-Parrinello dynamics in the preceding paper (Daschakraborty, S.; Kiefer, P. M.; Miller, Y.; Motro, Y.; Pines, D.; Pines, E.; Hynes, J. T. J. Phys. Chem. B 2016, DOI: 10.1021/acs.jpcb.5b12742). Here some important further details of the reaction path are presented, with specific emphasis on the water solvent's role. The overall reaction is barrierless and very rapid, on an ∼100 fs time scale, with the proton transfer (PT) event itself being very sudden (<10 fs). This transfer is preceded by the acid-base H-bond's compression, while the water solvent changes little until the actual PT occurrence; this results from the very strong driving force for the reaction, as indicated by the very favorable acid-protonated base ΔpKa difference. Further solvent rearrangement follows immediately the sudden PT's production of an incipient contact ion pair, stabilizing it by establishment of equilibrium solvation. The solvent water's short time scale ∼120 fs response to the incipient ion pair formation is primarily associated with librational modes and H-bond compression of water molecules around the carboxylate anion and the protonated base. This is consistent with this stabilization involving significant increase in H-bonding of hydration shell waters to the negatively charged carboxylate group oxygens' (especially the former H2CO3 donor oxygen) and the nitrogen of the positively charged protonated base's NH3(+).
Collapse
Affiliation(s)
- Snehasis Daschakraborty
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309-0215, United States
| | - Philip M Kiefer
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309-0215, United States
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev , P.O. Box 653, Beer-Sheva 84105, Israel
| | - Yair Motro
- Department of Chemistry, Ben-Gurion University of the Negev , P.O. Box 653, Beer-Sheva 84105, Israel
| | - Dina Pines
- Department of Chemistry, Ben-Gurion University of the Negev , P.O. Box 653, Beer-Sheva 84105, Israel
| | - Ehud Pines
- Department of Chemistry, Ben-Gurion University of the Negev , P.O. Box 653, Beer-Sheva 84105, Israel
| | - James T Hynes
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309-0215, United States.,Ecole Normale Supérieure-PSL Research University, Chemistry Department, Sorbonne Universités-UPMC University Paris 06, CNRS UMR 8640 Pasteur, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|