1
|
Tupally KR, Seal P, Pandey P, Lohman R, Smith S, Ouyang D, Parekh H. Integration of Dendrimer‐Based Delivery Technologies with Computational Pharmaceutics and Their Potential in the Era of Nanomedicine. EXPLORING COMPUTATIONAL PHARMACEUTICS ‐ AI AND MODELING IN PHARMA 4.0 2024:328-378. [DOI: 10.1002/9781119987260.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Michlewska S, Maly M, Wójkowska D, Karolczak K, Skiba E, Hołota M, Kubczak M, Ortega P, Watala C, Javier de la Mata F, Bryszewska M, Ionov M. Carbosilane ruthenium metallodendrimer as alternative anti-cancer drug carrier in triple negative breast cancer mouse model: A preliminary study. Int J Pharm 2023; 636:122784. [PMID: 36858135 DOI: 10.1016/j.ijpharm.2023.122784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
The carbosilane metallodendrimer G1-[[NCPh(o-N)Ru(η6- p-cymene)Cl]Cl]4 (CRD13), based on an arene Ru(II) complex coordinated to imino-pyridine surface groups, has been conjugated with anti-cancer drugs. Ruthenium in the positively-charged dendrimer structure allows this nanoparticle to be considered as an anticancer drug carrier, made more efficient because ruthenium has anticancer properties. The ability of CRD13 to form complexes with Doxorubicin (DOX), 5-Fluorouracil (5-Fu), and Methotrexate (MTX) has been evaluated using zeta potential measurement, transmission electron microscopy (TEM) and computer simulation. The results show that it forms stable nanocomplexes with all those drugs, enhancing their effectiveness against MDA-MB-231 cancer cells. In vivo tests indicate that the CRD13/DOX system caused a decrease of tumor weight in mice with triple negative breast cancer. However, the tumors were most visibly reduced when naked dendrimers were injected.
Collapse
Affiliation(s)
- Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Poland; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland.
| | - Marek Maly
- Department of Physics, Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic
| | - Dagmara Wójkowska
- Department of Haemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Mazowiecka st. 6/8, 92-215 Lodz, Poland
| | - Kamil Karolczak
- Department of Haemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Mazowiecka st. 6/8, 92-215 Lodz, Poland
| | - Elżbieta Skiba
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Marcin Hołota
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Małgorzata Kubczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Paula Ortega
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain; Instituto de Investigación Sanitaria Ramón y Cajal, IRYCIS, Spain
| | - Cezary Watala
- Department of Haemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Mazowiecka st. 6/8, 92-215 Lodz, Poland
| | - F Javier de la Mata
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain; Instituto de Investigación Sanitaria Ramón y Cajal, IRYCIS, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| |
Collapse
|
3
|
Abdel Aal S. Metalloborospherenes as a potential promising high drug-loading capacity for anticancer 5-fluorouracil drug: A DFT mechanistic approach. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
4
|
Zhao Y, Liu K, Li J, Liao J, Ma L. Engineering of hybrid anticancer drug-loaded polymeric nanoparticles delivery system for the treatment and care of lung cancer therapy. Drug Deliv 2021; 28:1539-1547. [PMID: 34282705 PMCID: PMC8293970 DOI: 10.1080/10717544.2021.1934187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 10/31/2022] Open
Abstract
Chemotherapy with combination drugs has become one of the most commonly used cancer prevention treatments, with positive clinical results. The goal of this study was to develop compostable polymeric nanomaterials (NMs) for the delivery of puerarin (PRN) and 5-fluorouracil (5FU), as well as to investigate the anticancer activity of the drug delivery system (PRN-5FU NMs) against in vitro and in vivo lung cancer cells. Since double antitumor drugs PRN and 5FU are insufficiently compressed in polymer-based bio-degradable nanoparticles, encapsulation of PRN and 5FU antitumor drugs were co-encapsulated with polyethylene glycol and polylactidecoglycolide nanoparticles (NMs) is efficient. The arrangement of PRN NMs, 5FU NMs, and PRN-5FU NMs, as well as the nanoparticles shape and scale, were studied using transmission electron microscopy (TEM). 5FU-PRN NMs triggered apoptosis in lung carcinoma cell lines such as HEL-299 and A549 in vitro. Acridine orange/ethidium bromide (AO/EB) and nuclear damaging staining techniques were used to observe morphologies and cell death. The mechanistic analysis of apoptosis was also confirmed by flow cytometry analysis using dual staining. When compared to free anticancer products, the hemolysis analysis findings of the 5FU-PRN NMs showed excellent biocompatibility. Taken together the advantages, this combination drug conveyance strategy exposed that 5FU-PRN NMs could have a significant promising to improve the effectiveness of lung cancer cells.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Kefeng Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Jie Li
- Third ward of Radiotherapy, Shaanxi Provincial Cancer Hospital, Xi’an, PR China
| | - Juan Liao
- Third ward of Radiotherapy, Shaanxi Provincial Cancer Hospital, Xi’an, PR China
| | - Li Ma
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
5
|
Ramos MC, Horta BAC. Drug-Loading Capacity of PAMAM Dendrimers Encapsulating Quercetin Molecules: A Molecular Dynamics Study with the 2016H66 Force Field. J Chem Inf Model 2021; 61:987-1000. [PMID: 33502188 DOI: 10.1021/acs.jcim.0c00960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The complexation of quercetin molecules with poly(amidoamine) (PAMAM) dendrimers of generation 0-3 was studied by molecular dynamics simulations. Three main points were addressed: (i) the effect of starting from different initial structures; (ii) the performance of the 2016H66 force field (recently validated in the context of dendrimer simulations) in predicting the experimental drug(quercetin)-loading capacity of PAMAM dendrimers; and (iii) the stability of quercetin-PAMAM complexes and their interactions. Initial structures generated by different restraint protocols led to faster convergence compared to initial structures generated by randomly placing the drug molecules in the simulation box. The simulations yielded meta-stable complexes where the loading numbers have converged to average values and were compared to experimentally obtained values. Once the first meta-stable state was reached, the drug-dendrimer complexes did not deviate significantly throughout the simulation. They were characterized in terms of structural properties, such as the radius of gyration and radial distribution functions. The results suggest that quercetin molecules interact mostly with the internal dendrimer monomers rather than to their surface.
Collapse
Affiliation(s)
- Mayk C Ramos
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Bruno A C Horta
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
6
|
De Luca S, Treny J, Chen F, Seal P, Stenzel MH, Smith SC. Enhancing Cationic Drug Delivery with Polymeric Carriers: The Coulomb‐pH Switch Approach. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Sergio De Luca
- Research School of Physics and Engineering The Australian National University Canberra ACT 2601 Australia
| | - Jennifer Treny
- Centre for Advanced Macromolecular Design School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
| | - Fan Chen
- Centre for Advanced Macromolecular Design School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
| | - Prasenjit Seal
- Department of Chemistry University of Helsinki P.O. Box 55 (A.I. Virtasen aukio 1) Helsinki 00014 Finland
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
| | - Sean C. Smith
- Research School of Physics and Engineering The Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
7
|
Optimization and computational studies evaluating molecular dynamics of EDA cored polymeric dendrimer. Sci Rep 2020; 10:21977. [PMID: 33319804 PMCID: PMC7738488 DOI: 10.1038/s41598-020-77540-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/09/2020] [Indexed: 12/03/2022] Open
Abstract
In this work we report the results acquired from molecular dynamics simulations as well as the optimization of different generations of polyamidoamine dendrimer. The analysis data revealed synthesized dendrimer as a suitable nanostructured candidate suitable for neutral as well as charged molecule delivery due to the presence of both electrostatic potential and van der Waals forces. The methyl ester terminating groups of half-generation dendrimers with characteristic IR peaks for carbonyl at 1670.41 cm−1 tends to shift to 1514.17 cm−1 on conversion to amide group of full-generation dendrimer. The study includes the usage of detailed analysis, demonstrating how molecular dynamics affect the dendrimer complexation. The present investigations provide an unprecedented insight into the computational and experimental system that may be of general significance for the clinical application of dendrimers.
Collapse
|
8
|
Luca S, Seal P, Parekh HS, Tupally KR, Smith SC. Cell Membrane Penetration without Pore Formation: Chameleonic Properties of Dendrimers in Response to Hydrophobic and Hydrophilic Environments. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.201900152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sergio Luca
- Integrated Materials Design LaboratoryDepartment of Applied MathematicsResearch School of PhysicsAustralian National University Acton ACT 2601 Australia
| | - Prasenjit Seal
- Department of ChemistryUniversity of Helsinki P.O. Box 55 (A.I. Virtasen aukio 1) Helsinki 00014 Finland
| | - Harendra S. Parekh
- School of PharmacyThe University of Queensland Brisbane QLD 4072 Australia
| | | | - Sean C. Smith
- Integrated Materials Design LaboratoryDepartment of Applied MathematicsResearch School of PhysicsAustralian National University Acton ACT 2601 Australia
| |
Collapse
|
9
|
Bello M, Rodríguez-Fonseca RA, Correa-Basurto J. Complexation of peptide epitopes with G4-PAMAM dendrimer through ligand diffusion molecular dynamic simulations. J Mol Graph Model 2019; 96:107514. [PMID: 31877401 DOI: 10.1016/j.jmgm.2019.107514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/01/2022]
Abstract
Peptide epitopes from HIV-1 gp120 have been used to block the gp120-CD4 complex, whereas their poor absorbable or immunogenic properties prevent them from coupling to generation four polyamidoamine (PAMAM-G4) dendrimers. PAMAM-G4 are synthetic nanoparticles that are relatively nontoxic and nonimmunogenic have been employed as nanocarriers. In a previous study, two peptide epitopes (ABC and PGV04) from gp120 located at the protein-protein interface of the gp120-CD4 complex were identified through protein-protein dissociation. Then, their complexation with G4-PAMAM was evaluated through experimental and theoretical approaches, revealing a stoichiometry of 1:8/9 for G4-PAMAM and ABC or PGV04, respectively, providing important information that can be used to gain insight into the structural and energetic basis of the molecular binding of these G4-PAMAM-peptide systems. In this contribution, we performed ligand diffusion molecular dynamic simulations (LDMDSs) using 1.5 μs combined with the molecular mechanics generalized Born surface area (MMGBSA) approach, a strategy that successfully reproduced experimentally encapsulation on PAMAM-G4-ligand complexes, to explore the mechanism through which ABC and PGV04 are encapsulated by PAMAM-G4 under neutral and acid conditions. Our results reproduce the reported PAMAM-G4-peptide complex stoichiometry, revealing a slower peptide delivery at neutral conditions and a spontaneous release under acidic conditions. LDMDSs show that several peptides can reach stable G4-PAMAM complexes at neutral pH, and only a few are able to encapsulate on dendrimers without impacting dendrimer sphericity. Energetic analysis exploring different generalized Born models revealed that the ABC peptide has better binding properties than PGV04.
Collapse
Affiliation(s)
- Martiniano Bello
- Laboratorio de Modelado Molecular, Diseño de fármacos y Bioinformática, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México, 11340, Mexico.
| | - Rolando Alberto Rodríguez-Fonseca
- Laboratorio de Modelado Molecular, Diseño de fármacos y Bioinformática, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México, 11340, Mexico
| | - José Correa-Basurto
- Laboratorio de Modelado Molecular, Diseño de fármacos y Bioinformática, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México, 11340, Mexico
| |
Collapse
|
10
|
Bello M, Rodríguez-Fonseca RA. Complexation of methotrexate via ligand diffusion molecular dynamic simulations under neutral, basic, and acidic conditions. J Mol Graph Model 2019; 93:107443. [PMID: 31479949 DOI: 10.1016/j.jmgm.2019.107443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 11/29/2022]
Abstract
Methotrexate (MTX), an FDA-approved drug employed in the treatment of several types of cancer and autoimmune diseases, is characterized by its poor solubility. Therefore, new strategies have been implemented such as coupling to nanocarriers to increase its solubility. Previous experimental studies have demonstrated complexation of MTX to polyamidoamine of a generation four (PAMAM-G4) dendrimer with a complex stoichiometry of 19/22:1 under neutral conditions, providing important information that can be used to further elucidate the structural and energetic basis of the molecular binding of MTX and PAMAM-G4. In this study, we performed ligand diffusion molecular dynamic simulations (LDMDSs), using 3 μs combined with the molecular mechanics generalized surface area (MMGBSA) approach employing saturating concentrations of MTX to explore the mechanism through which MTX is complexed by PAMAM-G4 at neutral, basic, and acidic conditions. Our results reproduce the reported complex stoichiometry between MTX and PAMAM-G4 in neutral conditions. Binding free energy values suggest a much slower release in neutral and acidic conditions, consistent with the controlled rate of drug release into the bloodstream and when reaching the acidic environment of tumor tissues. Altogether, the methodology employed and the results may be useful in the evaluation of other drugs of pharmaceutical interest.
Collapse
Affiliation(s)
- Martiniano Bello
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, México. Plan de San Luis Y Díaz Mirón S/N, Col. Casco de Santo Tomas, México City, CP, 11340, Mexico.
| | - Rolando Alberto Rodríguez-Fonseca
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, México. Plan de San Luis Y Díaz Mirón S/N, Col. Casco de Santo Tomas, México City, CP, 11340, Mexico
| |
Collapse
|
11
|
Seal P, Xu J, Luca S, Boyer C, Smith SC. Unraveling Photocatalytic Mechanism and Selectivity in PET‐RAFT Polymerization. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Prasenjit Seal
- Department of ChemistryUniversity of Helsinki P.O. Box 55 (A.I. Virtasen aukio 1) 00014 Helsinki Finland
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicineSchool of Chemical EngineeringUNSW Australia Sydney NSW 2052 Australia
| | - Sergio Luca
- Integrated Materials Design CentreSchool of Chemical EngineeringUNSW Australia Sydney NSW 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicineSchool of Chemical EngineeringUNSW Australia Sydney NSW 2052 Australia
| | - Sean C. Smith
- Department of Applied MathematicsResearch School of Physics and EngineeringThe Australian National University Acton ACT 2601 Australia
| |
Collapse
|
12
|
Shen ZL, Tian WD, Chen K, Ma YQ. Molecular dynamics simulation of G-actin interacting with PAMAM dendrimers. J Mol Graph Model 2018; 84:145-151. [DOI: 10.1016/j.jmgm.2018.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/13/2018] [Accepted: 06/12/2018] [Indexed: 11/15/2022]
|
13
|
Ghadari R, Mohammadzadeh Y. MD simulation studies on the effect of the temperature and protonation state on the imide-linked amino acid-based dendrimers. COMPUTATIONAL MATERIALS SCIENCE 2018; 151:124-131. [DOI: 10.1016/j.commatsci.2018.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Polyamidoamine Dendrimers for Enhanced Solubility of Small Molecules and Other Desirable Properties for Site Specific Delivery: Insights from Experimental and Computational Studies. Molecules 2018; 23:molecules23061419. [PMID: 29895742 PMCID: PMC6100328 DOI: 10.3390/molecules23061419] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 01/05/2023] Open
Abstract
Clinical applications of many small molecules are limited due to poor solubility and lack of controlled release besides lack of other desirable properties. Experimental and computational studies have reported on the therapeutic potential of polyamidoamine (PAMAM) dendrimers as solubility enhancers in pre-clinical and clinical settings. Besides formulation strategies, factors such as pH, PAMAM dendrimer generation, PAMAM dendrimer concentration, nature of the PAMAM core, special ligand and surface modifications of PAMAM dendrimer have an influence on drug solubility and other recommendable pharmacological properties. This review, therefore, compiles the recently reported applications of PAMAM dendrimers in pre-clinical and clinical uses as enhancers of solubility and other desirable properties such as sustained and controlled release, bioavailability, bio-distribution, toxicity reduction or enhancement, and targeted delivery of small molecules with emphasis on cancer treatment.
Collapse
|
15
|
De Luca S, Chen F, Seal P, Stenzel MH, Smith SC. Binding and Release between Polymeric Carrier and Protein Drug: pH-Mediated Interplay of Coulomb Forces, Hydrogen Bonding, van der Waals Interactions, and Entropy. Biomacromolecules 2017; 18:3665-3677. [PMID: 28880549 DOI: 10.1021/acs.biomac.7b00657] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The accelerating search for new types of drugs and delivery strategies poses challenge to understanding the mechanism of delivery. To this end, a detailed atomistic picture of binding between the drug and carrier is quintessential. Although many studies focus on the electrostatics of drug-vector interactions, it has also been pointed out that entropic factors relating to water and counterions can play an important role. By carrying out extensive molecular dynamics simulations and subsequently validating with experiments, we shed light herein on the binding in aqueous solution between a protein drug and polymeric carrier. We examined the complexation between the polymer poly(ethylene glycol) methyl ether acrylate-b-poly(carboxyethyl acrylate (PEGMEA-b-PCEA) and the protein egg white lysozyme, a system that acts as a model for polymer-vector/protein-drug delivery systems. The complexation has been visualized and characterized using contact maps and hydrogen bonding analyses for five independent simulations of the complex, each running over 100 ns. Binding at physiological pH is, as expected, mediated by Coulombic attraction between the positively charged protein and negatively charged carboxylate groups on the polymer. However, we find that consideration of electrostatics alone is insufficient to explain the complexation behavior at low pH. Intracomplex hydrogen bonds, van der Waals interactions, as well as water-water interactions dictate that the polymer does not release the protein at pH 4.8 or indeed at pH 3.2 even though the Coulombic attractions are largely removed as carboxylate groups on the polymer become titrated. Experiments in aqueous solution carried out at pH 7.0, 4.5, and 3.0 confirm the veracity of the computed binding behavior. Overall, these combined simulation and experimental results illustrate that coulomb interactions need to be complemented with consideration of other entropic forces, mediated by van der Waals interactions and hydrogen bonding, to search for adequate descriptors to predict binding and release properties of polymer-protein complexes. Advances in computational power over the past decade make atomistic molecular dynamics simulations such as implemented here one of the few avenues currently available to elucidate the complexity of these interactions and provide insights toward finding adequate descriptors. Thus, there remains much room for improvement of design principles for efficient capture and release delivery systems.
Collapse
Affiliation(s)
- Sergio De Luca
- Integrated Material Design Centre (IMDC), School of Chemical Engineering and ‡Centre for Advanced Macromolecular Design, School of Chemical Engineering and School of Chemistry, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Fan Chen
- Integrated Material Design Centre (IMDC), School of Chemical Engineering and ‡Centre for Advanced Macromolecular Design, School of Chemical Engineering and School of Chemistry, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Prasenjit Seal
- Integrated Material Design Centre (IMDC), School of Chemical Engineering and ‡Centre for Advanced Macromolecular Design, School of Chemical Engineering and School of Chemistry, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Martina H Stenzel
- Integrated Material Design Centre (IMDC), School of Chemical Engineering and ‡Centre for Advanced Macromolecular Design, School of Chemical Engineering and School of Chemistry, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Sean C Smith
- Integrated Material Design Centre (IMDC), School of Chemical Engineering and ‡Centre for Advanced Macromolecular Design, School of Chemical Engineering and School of Chemistry, The University of New South Wales , Sydney, New South Wales 2052, Australia
| |
Collapse
|
16
|
Rokach S, Ottaviani MF, Shames AI, Aserin A, Garti N. Behavior of PPI-G2 Dendrimer in a Microemulsion. J Phys Chem B 2017; 121:2339-2349. [DOI: 10.1021/acs.jpcb.6b10237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Shifra Rokach
- The
Ratner Chair of Chemistry, Casali Institute of Applied Chemistry,
The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond
J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
- Judea Regional Research & Development Center, Carmel 9040400, Israel
| | - Maria Francesca Ottaviani
- Department
of Earth, Life and Environment Sciences, University of Urbino, Loc. Crocicchia, Urbino 61029, Italy
| | - Alexander I. Shames
- Department
of Physics, Ben-Gurion University of the Negev, P.O. Box 653, Be’er-Sheva 84105, Israel
| | - Abraham Aserin
- The
Ratner Chair of Chemistry, Casali Institute of Applied Chemistry,
The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond
J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Nissim Garti
- The
Ratner Chair of Chemistry, Casali Institute of Applied Chemistry,
The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond
J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
17
|
Barraza LF, Jiménez VA, Alderete JB. Association of Methotrexate with Native and PEGylated PAMAM-G4 Dendrimers: Effect of the PEGylation Degree on the Drug-Loading Capacity and Preferential Binding Sites. J Phys Chem B 2016; 121:4-12. [DOI: 10.1021/acs.jpcb.6b08882] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Luis F. Barraza
- Departamento de
Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Talcahuano, 4260000, Chile
| | - Verónica A. Jiménez
- Departamento de
Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Talcahuano, 4260000, Chile
| | - Joel B. Alderete
- Departamento de Química Orgánica, Facultad de Ciencias
Químicas, Universidad de Concepción, Casilla 160-C, Concepción, 4070371, Chile
| |
Collapse
|