1
|
Rhodes ER, Day NB, Aldrich EC, Wyatt Shields C, Sprenger KG. Elucidating the role of carrier proteins in cytokine stabilization within double emulsion-based polymeric nanoparticles. Bioeng Transl Med 2025; 10:e10722. [PMID: 39801762 PMCID: PMC11711224 DOI: 10.1002/btm2.10722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 01/16/2025] Open
Abstract
Polymeric micro- and nanoparticles are useful vehicles for delivering cytokines to diseased tissues such as solid tumors. Double emulsion solvent evaporation is one of the most common techniques to formulate cytokines into vehicles made from hydrophobic polymers; however, the liquid-liquid interfaces formed during emulsification can greatly affect the stability and therapeutic performance of encapsulated cytokines. To develop more effective cytokine-delivery systems, a clear molecular understanding of the interactions between relevant proteins and solvents used in the preparation of such particles is needed. We utilized an integrated computational and experimental approach for studying the governing mechanisms by which interleukin-12 (IL-12), a clinically relevant cytokine, is protected from denaturation by albumin, a common stabilizing protein, at an organic-aqueous solvent interface formed during double emulsification. We investigated protein-protein interactions between human (h)IL-12 and albumin and simulated these components in pure water, dichloromethane (DCM), and along a water/DCM interface to replicate the solvent regimes formed during double emulsification. We observed that (i) hIL-12 experiences increased structural deviations near the water/DCM interface, and (ii) hIL-12 structural deviations are reduced in the presence of albumin. Experimentally, we found that hIL-12 bioactivity is retained when released from particles in which albumin is added to the aqueous phase in molar excess to hIL-12 and sufficient time is allowed for albumin-hIL-12 binding. Findings from this work have implications in establishing design principles to enhance the stability of cytokines and other unstable proteins in particles formed by double emulsification for improved stability and therapeutic efficacy.
Collapse
Affiliation(s)
- Emily R. Rhodes
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
| | - Nicole B. Day
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
| | - Emma C. Aldrich
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
| | - C. Wyatt Shields
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- Biomedical Engineering ProgramUniversity of Colorado BoulderBoulderColoradoUSA
| | - Kayla G. Sprenger
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- Biomedical Engineering ProgramUniversity of Colorado BoulderBoulderColoradoUSA
| |
Collapse
|
2
|
Nassab CN, Arooj M, Shehadi IA, Parambath JBM, Kanan SM, Mohamed AA. Lysozyme and Human Serum Albumin Proteins as Potential Nitric Oxide Cardiovascular Drug Carriers: Theoretical and Experimental Investigation. J Phys Chem B 2021; 125:7750-7762. [PMID: 34232651 DOI: 10.1021/acs.jpcb.1c04614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide-containing drugs present a critical remedy for cardiovascular diseases. Nitroglycerin (NG, O-NO) and S-nitrosoglutathione (SNG, S-NO) are the most common nitric oxide drugs for cardiovascular diseases. Insights regarding the binding affinity of NO drugs with lysozyme and human serum albumin (HSA) proteins and their dissociation mechanism will provide inquisitive information regarding the potential of the proteins as drug carriers. For the first time, the binding interactions and affinities are investigated using molecular docking, conventional molecular dynamics, steered molecular dynamics, and umbrella sampling to explore the ability of both proteins to act as nitric oxide drug carriers. The molecular dynamics simulation results showed higher stability of lysozyme-drug complexes compared to HSA. For lysozyme, cardiovascular drugs were bound in the protein cavity mainly by the electrostatic and hydrogen bond interactions with residues ASP53, GLN58, ILE59, ARG62, TRP64, ASP102, and TRP109. For HSA, key binding residues were ARG410, TYR411, LYS414, ARG485, GLU450, ARG486, and SER489. The free energy profiles produced from umbrella sampling also suggest that lysozyme-drug complexes had better binding affinity than HSA-drug. Binding characteristics of nitric oxide-containing drugs NG and SNG to lysozyme and HSA proteins were studied using fluorescence and UV-vis absorption spectroscopy. The relative change in the fluorescence intensity as a function of drug concentrations was analyzed using Stern-Volmer calculations. This was also confirmed by the change in the UV-vis spectra. Fluorescence quenching results of both proteins with the drugs, based on the binding constant values, demonstrated significantly weak binding affinity to NG and strong binding affinity to SNG. Both computational and experimental studies provided important data for understanding protein-drug interactions and will aid in developing potential drug carrier systems in cardiovascular diseases.
Collapse
Affiliation(s)
- Chahlaa N Nassab
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, UAE
| | - Mahreen Arooj
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, UAE
| | - Ihsan A Shehadi
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, UAE
| | - Javad B M Parambath
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, UAE
| | - Sofian M Kanan
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah 26666, UAE
| | - Ahmed A Mohamed
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, UAE
| |
Collapse
|
3
|
Interfacial association of ferritin with anionic fluorescent probe at the 1,2-dichloroethane/water interface. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Gamero-Quijano A, Dossot M, Walcarius A, Scanlon MD, Herzog G. Electrogeneration of a Free-Standing Cytochrome c-Silica Matrix at a Soft Electrified Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4033-4041. [PMID: 33761740 PMCID: PMC8562870 DOI: 10.1021/acs.langmuir.1c00409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Interactions of a protein with a solid-liquid or a liquid-liquid interface may destabilize its conformation and hence result in a loss of biological activity. We propose here a method for the immobilization of proteins at an electrified liquid-liquid interface. Cytochrome c (Cyt c) is encapsulated in a silica matrix through an electrochemical process at an electrified liquid-liquid interface. Silica condensation is triggered by the interfacial transfer of cationic surfactant, cetyltrimethylammonium, at the lower end of the interfacial potential window. Cyt c is then adsorbed on the previously electrodeposited silica layer, when the interfacial potential, Δowϕ, is at the positive end of the potential window. By cycling of the potential window back and forth, silica electrodeposition and Cyt c adsorption occur sequentially as demonstrated by in situ UV-vis absorbance spectroscopy. After collection from the liquid-liquid interface, the Cyt c-silica matrix is characterized ex situ by UV-vis diffuse reflectance spectroscopy, confocal Raman microscopy, and fluorescence microscopy, showing that the protein maintained its tertiary structure during the encapsulation process. The absence of denaturation is further confirmed in situ by the absence of electrocatalytic activity toward O2 (observed in the case of Cyt c denaturation). This method of protein encapsulation may be used for other proteins (e.g., Fe-S cluster oxidoreductases, copper-containing reductases, pyrroloquinoline quinone-containing enzymes, or flavoproteins) in the development of biphasic bioelectrosynthesis or bioelectrocatalysis applications.
Collapse
Affiliation(s)
- Alonso Gamero-Quijano
- The
Bernal Institute and Department of Chemical Sciences, School of Natural
Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Manuel Dossot
- Université
de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | | | - Micheál D. Scanlon
- The
Bernal Institute and Department of Chemical Sciences, School of Natural
Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | | |
Collapse
|
5
|
Garrido PF, Bastos M, Velázquez-Campoy A, Dumas P, Piñeiro Á. Fluid interface calorimetry. J Colloid Interface Sci 2021; 596:119-129. [PMID: 33839346 DOI: 10.1016/j.jcis.2021.03.098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
HYPOTHESIS Amphiphilic molecules spontaneously adsorb to fluid polar-nonpolar interfaces. The timescale of such adsorption depends on the molecular size and structure of the solute. This process should be accompanied by a power heat exchange that could be detected by commercial isothermal calorimeters. EXPERIMENTS Air is injected in the bulk of different aqueous solutions contained in the sample cell of an isothermal titration calorimeter. The formation of the resulting bubbles leads to a liquid/air interface to which the solute molecules spontaneously adsorb. Continuous injection experiments to produce multiple bubbles as well as experiments with static bubbles stand from the capillary tip, aiming to observe slow adsorption processes, were performed. FINDINGS The power associated with the formation, growth and release of air bubbles in different liquids was measured. Different independent contributions that can be associated to the pressure change in the gas phase, the evaporation-condensation of the solvent, the increase of interfacial area, the change in the heat capacity of the sample cell content, and the release of the bubble were observed. The periodic pattern produced by the continuous injection of air at a constant rate is used to determine the surface tension of different liquids, including solutions of different molecules and (bio)macromolecules.
Collapse
Affiliation(s)
- Pablo F Garrido
- Departamento de Fisica de Aplicada, Facultade de Fisica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Margarida Bastos
- CIQ-UP, Departamento de Quimica e Bioquimica, Faculdade de Ciencias da Universidade do Porto, R. Campo Alegre 687, P-4169-007 Porto, Portugal
| | - Adrián Velázquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza 50018, Spain; Department of Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza, 50009 Zaragoza, Spain; Aragon Institute for Health Research (IIS Aragon), 50009 Zaragoza, Spain; Biomedical Research Networking Centre for Liver and Digestive Diseases (CIBERehd), 28029 Madrid, Spain; Fundacion ARAID, Government of Aragon, 50018 Zaragoza, Spain
| | - Philippe Dumas
- IGBMC, Dept of Integrative Biology, Strasbourg University, F67404 Illkirch CEDEX, France
| | - Ángel Piñeiro
- Departamento de Fisica de Aplicada, Facultade de Fisica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
6
|
Dandekar R, Ardekani AM. Monoclonal Antibody Aggregation near Silicone Oil-Water Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1386-1398. [PMID: 33478225 DOI: 10.1021/acs.langmuir.0c02785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, we study the hydrodynamic behavior of monoclonal antibodies in the presence of silicone oil-water interfaces. We model the antibody molecules using a coarse-grained 24-bead model, where two beads are used to represent each antibody domain. We consider the spatial variation of the antibody polarity in our model as each bead represents a set of hydrophilic or hydrophobic amino acids. We use the dissipative particle dynamics scheme to represent the coarse-grained force field which governs the motion of the beads. In addition, interprotein interactions are modeled using an electrostatic force field. The model parameters are determined by comparing the structure factor against experimental structure factor data ranging from a low concentration regime (10 mg/mL) to a high concentration regime (150 mg/mL). Next, we conduct simulations for a suspension of antibody molecules in the presence of silicone oil-water interfaces. Protein loss from the bulk solution is noticed as the molecules adsorb at the interface. We observe dynamic cluster formation in the solution bulk and at the interface, as the antibody molecules self-associate along their trajectories. We quantify the aggregation using a density clustering algorithm and investigate the effect of the antibody concentration on the diffusivity of the antibody solution, aggregation propensity, and protein loss from the bulk. Our study shows that numerical simulations can be an important tool for understanding the molecular mechanisms driving protein aggregation near hydrophobic interfaces.
Collapse
Affiliation(s)
- Rajat Dandekar
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
7
|
Liu C, Ma Y, Nan J, Wang L. Ion Transfer-Resolved Fusion Impacts of Single Droplets Probed at the Liquid/Liquid Interface. Anal Chem 2020; 92:15394-15402. [DOI: 10.1021/acs.analchem.0c02991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Cheng Liu
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Ya Ma
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Junmin Nan
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
8
|
Zhao D, Wang Y, Su Q, Li L, Zhou J. Lysozyme Adsorption on Porous Organic Cages: A Molecular Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12299-12308. [PMID: 32988201 DOI: 10.1021/acs.langmuir.0c02233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, porous organic cages (POCs) have emerged as a novel porous material with many merits and are widely utilized in many application fields. In this work, for the first time, molecular dynamics simulations were performed to investigate the mechanism of lysozyme adsorption onto the CC3 crystal, a kind of widely studied POC material. The simulation results show that lysozyme adsorbs onto the surface of CC3 with "top end-on," "back-on," or "side-on" orientations. It is found that the van der Waals interaction is the primary contribution to the binding; the conformation of the lysozyme is well preserved during the adsorption process. This provides some evidence for its biocompatibility and feasibility in biorelated applications. Arginine plays an important role in mediating the adsorption through nonpolar aliphatic chains. More importantly, the distribution and structure of the water layer on the POC surface has a significant impact on adsorption. This study provides insights into the development of POC materials with defined morphologies for the adsorption of biomolecules and may help the rational design of biorelated systems.
Collapse
Affiliation(s)
- Daohui Zhao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P.R. China
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yuqing Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P.R. China
| | - Qianwen Su
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P.R. China
| | - Libo Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
9
|
Arooj M, Arrigan DWM, Mancera RL. Characterization of Protein-Facilitated Ion-Transfer Mechanism at a Polarized Aqueous/Organic Interface. J Phys Chem B 2019; 123:7436-7444. [PMID: 31379167 DOI: 10.1021/acs.jpcb.9b04746] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein electrochemistry studies at a polarized interface between two immiscible electrolyte solutions (ITIES) indicate that the detection mechanism of a protein at the interface involves a combination of protein-anion complexation and interfacial adsorption processes. A detailed characterization of the protein-facilitated mechanism of ion transfer at the ITIES will allow the development of new label-free biomolecular detection tools. Molecular dynamics simulations were performed to describe the mechanism of transfer of the hydrophobic anion tetraphenylborate (TPB-) from a 1,2-dichloroethane (organic) phase to an aqueous phase mediated by lysozyme as a model protein under the action of an external electric field. The anion migrated to the protein at the interface and formed multiple contacts. The side chains of positively charged Lys and Arg residues formed electrostatic interactions with the anion. Nonpolar residues like Trp, Met, and Val formed hydrophobic contacts with the anion as it moved along the protein surface. During this process, lysozyme adopted multiple, partially unfolded conformations at the interface, all involving various anion-protein complexes with small free-energy barriers between them. The general mechanism of protein-facilitated ion transfer at a polarized liquid-liquid interface thus likely involves the movement of a hydrophobic anion along the protein surface through a combination of electrostatic and hydrophobic interactions.
Collapse
Affiliation(s)
- Mahreen Arooj
- Department of Chemistry, College of Sciences , University of Sharjah , Sharjah 27272 , United Arab Emirates
| | | | | |
Collapse
|
10
|
Cheung DL. The air-water interface stabilizes α-helical conformations of the insulin B-chain. J Chem Phys 2019. [DOI: 10.1063/1.5100253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- David L. Cheung
- School of Chemistry, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
11
|
Booth SG, Felisilda BMB, Alvarez de Eulate E, Gustafsson OJR, Arooj M, Mancera RL, Dryfe RAW, Hackett MJ, Arrigan DWM. Secondary Structural Changes in Proteins as a Result of Electroadsorption at Aqueous-Organogel Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5821-5829. [PMID: 30955327 DOI: 10.1021/acs.langmuir.8b04227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The electroadsorption of proteins at aqueous-organic interfaces offers the possibility to examine protein structural rearrangements upon interaction with lipophilic phases, without modifying the bulk protein or relying on a solid support. The aqueous-organic interface has already provided a simple means of electrochemical protein detection, often involving adsorption and ion complexation; however, little is yet known about the protein structure at these electrified interfaces. This work focuses on the interaction between proteins and an electrified aqueous-organic interface via controlled protein electroadsorption. Four proteins known to be electroactive at such interfaces were studied: lysozyme, myoglobin, cytochrome c, and hemoglobin. Following controlled protein electroadsorption onto the interface, ex situ structural characterization of the proteins by FTIR spectroscopy was undertaken, focusing on secondary structural traits within the amide I band. The structural variations observed included unfolding to form aggregated antiparallel β-sheets, where the rearrangement was specifically dependent on the interaction with the organic phase. This was supported by MALDI ToF MS measurements, which showed the formation of protein-anion complexes for three of these proteins, and molecular dynamic simulations, which modeled the structure of lysozyme at an aqueous-organic interface. On the basis of these findings, the modulation of protein secondary structure by interfacial electrochemistry opens up unique prospects to selectively modify proteins.
Collapse
Affiliation(s)
- Samuel G Booth
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL U.K
| | | | | | | | - Mahreen Arooj
- Department of Chemistry, College of Sciences , University of Sharjah , Sharjah 27272 , United Arab Emirates
| | | | - Robert A W Dryfe
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL U.K
| | | | | |
Collapse
|
12
|
Abstract
Surfaces and interfaces are ubiquitous in nature and are involved in many biological processes. Due to this, natural organisms have evolved a number of methods to control interfacial and surface properties. Many of these methods involve the use of specialised protein biosurfactants, which due to the competing demands of high surface activity, biocompatibility, and low solution aggregation may take structures that differ from the traditional head–tail structure of small molecule surfactants. As well as their biological functions, these proteins have also attracted interest for industrial applications, in areas including food technology, surface modification, and drug delivery. To understand the biological functions and technological applications of protein biosurfactants, it is necessary to have a molecular level description of their behaviour, in particular at surfaces and interfaces, for which molecular simulation is well suited to investigate. In this review, we will give an overview of simulation studies of a number of examples of protein biosurfactants (hydrophobins, surfactin, and ranaspumin). We will also outline some of the key challenges and future directions for molecular simulation in the investigation of protein biosurfactants and how this can help guide future developments.
Collapse
|
13
|
Cheung DL. Adsorption and conformations of lysozyme and α-lactalbumin at a water-octane interface. J Chem Phys 2018; 147:195101. [PMID: 29166117 DOI: 10.1063/1.4994561] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
As proteins contain both hydrophobic and hydrophilic amino acids, they will readily adsorb onto interfaces between water and hydrophobic fluids such as oil. This adsorption normally causes changes in the protein structure, which can result in loss of protein function and irreversible adsorption, leading to the formation of protein interfacial films. While this can be advantageous in some applications (e.g., food technology), in most cases it limits our ability to exploit protein functionality at interfaces. To understand and control protein interfacial adsorption and function, it is necessary to understand the microscopic conformation of proteins at liquid interfaces. In this paper, molecular dynamics simulations are used to investigate the adsorption and conformation of two similar proteins, lysozyme and α-lactalbumin, at a water-octane interface. While they both adsorb onto the interface, α-lactalbumin does so in a specific orientation, mediated by two amphipathic helices, while lysozyme adsorbs in a non-specific manner. Using replica exchange simulations, both proteins are found to possess a number of distinct interfacial conformations, with compact states similar to the solution conformation being most common for both proteins. Decomposing the different contributions to the protein energy at oil-water interfaces suggests that conformational change for α-lactalbumin, unlike lysozyme, is driven by favourable protein-oil interactions. Revealing these differences between the factors that govern the conformational change at interfaces in otherwise similar proteins can give insight into the control of protein interfacial adsorption, aggregation, and function.
Collapse
Affiliation(s)
- David L Cheung
- School of Chemistry, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
14
|
Brandani GB, Vance SJ, Schor M, Cooper A, Kennedy MW, Smith BO, MacPhee CE, Cheung DL. Adsorption of the natural protein surfactant Rsn-2 onto liquid interfaces. Phys Chem Chem Phys 2017; 19:8584-8594. [PMID: 28289744 DOI: 10.1039/c6cp07261e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
To stabilize foams, droplets and films at liquid interfaces a range of protein biosurfactants have evolved in nature. Compared to synthetic surfactants, these combine surface activity with biocompatibility and low solution aggregation. One recently studied example is Rsn-2, a component of the foam nest of the frog Engystomops pustulosus, which has been predicted to undergo a clamshell-like opening transition at the air-water interface. Using atomistic molecular dynamics simulations and surface tension measurements we study the adsorption of Rsn-2 onto air-water and cyclohexane-water interfaces. The protein adsorbs readily at both interfaces, with adsorption mediated by the hydrophobic N-terminus. At the cyclohexane-water interface the clamshell opens, due to the favourable interaction between hydrophobic residues and cyclohexane molecules and the penetration of cyclohexane molecules into the protein core. Simulations of deletion mutants showed that removal of the N-terminus inhibits interfacial adsorption, which is consistent with the surface tension measurements. Deletion of the hydrophilic C-terminus also affects adsorption, suggesting that this plays a role in orienting the protein at the interface. The characterisation of the interfacial behaviour gives insight into the factors that control the interfacial adsorption of proteins, which may inform new applications of this and similar proteins in areas including drug delivery and food technology and may also be used in the design of synthetic molecules showing similar changes in conformation at interfaces.
Collapse
Affiliation(s)
- Giovanni B Brandani
- School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK.
| | - Steven J Vance
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Marieke Schor
- School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK.
| | - Alan Cooper
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Malcolm W Kennedy
- School of Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Brian O Smith
- Institute of Molecular, Cell, and Systems Biology, University of Glasgow, G12 8QQ, UK.
| | - Cait E MacPhee
- School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK.
| | - David L Cheung
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK and School of Chemistry, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
15
|
Felisilda BMB, Alvarez de Eulate E, Stringer DN, Fitton JH, Arrigan DWM. Electrochemical behaviour at a liquid-organogel microinterface array of fucoidan extracted from algae. Analyst 2017; 142:3194-3202. [DOI: 10.1039/c7an00761b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The electrochemical behaviour of fucoidan, a sulfated polysaccharide, was investigated, leading to a detection strategy by adsorptive stripping voltammetry.
Collapse
Affiliation(s)
- Bren Mark B. Felisilda
- Curtin Institute of Functional Molecules and Interfaces
- Department of Chemistry
- Curtin University
- Perth
- Australia
| | - Eva Alvarez de Eulate
- Curtin Institute of Functional Molecules and Interfaces
- Department of Chemistry
- Curtin University
- Perth
- Australia
| | | | | | - Damien W. M. Arrigan
- Curtin Institute of Functional Molecules and Interfaces
- Department of Chemistry
- Curtin University
- Perth
- Australia
| |
Collapse
|