1
|
Angom RS, Nakka NMR, Bhattacharya S. Advances in Glioblastoma Therapy: An Update on Current Approaches. Brain Sci 2023; 13:1536. [PMID: 38002496 PMCID: PMC10669378 DOI: 10.3390/brainsci13111536] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a primary malignant brain tumor characterized by a high grade of malignancy and an extremely unfavorable prognosis. The current efficacy of established treatments for GBM is insufficient, necessitating the prompt development of novel therapeutic approaches. The progress made in the fundamental scientific understanding of GBM is swiftly translated into more advanced stages of therapeutic studies. Despite extensive efforts to identify new therapeutic approaches, GBM exhibits a high mortality rate. The current efficacy of treatments for GBM patients is insufficient due to factors such as tumor heterogeneity, the blood-brain barrier, glioma stem cells, drug efflux pumps, and DNA damage repair mechanisms. Considering this, pharmacological cocktail therapy has demonstrated a growing efficacy in addressing these challenges. Towards this, various forms of immunotherapy, including the immune checkpoint blockade, chimeric antigen receptor T (CAR T) cell therapy, oncolytic virotherapy, and vaccine therapy have emerged as potential strategies for enhancing the prognosis of GBM. Current investigations are focused on exploring combination therapies to mitigate undesirable side effects and enhance immune responses against tumors. Furthermore, clinical trials are underway to evaluate the efficacy of several strategies to circumvent the blood-brain barrier (BBB) to achieve targeted delivery in patients suffering from recurrent GBM. In this review, we have described the biological and molecular targets for GBM therapy, pharmacologic therapy status, prominent resistance mechanisms, and new treatment approaches. We also discuss these promising therapeutic approaches to assess prospective innovative therapeutic agents and evaluated the present state of preclinical and clinical studies in GBM treatment. Overall, this review attempts to provide comprehensive information on the current status of GBM therapy.
Collapse
Affiliation(s)
- Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (R.S.A.); (N.M.R.N.)
| | - Naga Malleswara Rao Nakka
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (R.S.A.); (N.M.R.N.)
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (R.S.A.); (N.M.R.N.)
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| |
Collapse
|
2
|
Rabah N, Ait Mohand FE, Kravchenko-Balasha N. Understanding Glioblastoma Signaling, Heterogeneity, Invasiveness, and Drug Delivery Barriers. Int J Mol Sci 2023; 24:14256. [PMID: 37762559 PMCID: PMC10532387 DOI: 10.3390/ijms241814256] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The most prevalent and aggressive type of brain cancer, namely, glioblastoma (GBM), is characterized by intra- and inter-tumor heterogeneity and strong spreading capacity, which makes treatment ineffective. A true therapeutic answer is still in its infancy despite various studies that have made significant progress toward understanding the mechanisms behind GBM recurrence and its resistance. The primary causes of GBM recurrence are attributed to the heterogeneity and diffusive nature; therefore, monitoring the tumor's heterogeneity and spreading may offer a set of therapeutic targets that could improve the clinical management of GBM and prevent tumor relapse. Additionally, the blood-brain barrier (BBB)-related poor drug delivery that prevents effective drug concentrations within the tumor is discussed. With a primary emphasis on signaling heterogeneity, tumor infiltration, and computational modeling of GBM, this review covers typical therapeutic difficulties and factors contributing to drug resistance development and discusses potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (N.R.); (F.-E.A.M.)
| |
Collapse
|
3
|
Alkhatib H, Rubinstein AM, Vasudevan S, Flashner-Abramson E, Stefansky S, Chowdhury SR, Oguche S, Peretz-Yablonsky T, Granit A, Granot Z, Ben-Porath I, Sheva K, Feldman J, Cohen NE, Meirovitz A, Kravchenko-Balasha N. Computational quantification and characterization of independently evolving cellular subpopulations within tumors is critical to inhibit anti-cancer therapy resistance. Genome Med 2022; 14:120. [PMID: 36266692 PMCID: PMC9583500 DOI: 10.1186/s13073-022-01121-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Drug resistance continues to be a major limiting factor across diverse anti-cancer therapies. Contributing to the complexity of this challenge is cancer plasticity, in which one cancer subtype switches to another in response to treatment, for example, triple-negative breast cancer (TNBC) to Her2-positive breast cancer. For optimal treatment outcomes, accurate tumor diagnosis and subsequent therapeutic decisions are vital. This study assessed a novel approach to characterize treatment-induced evolutionary changes of distinct tumor cell subpopulations to identify and therapeutically exploit anticancer drug resistance. METHODS In this research, an information-theoretic single-cell quantification strategy was developed to provide a high-resolution and individualized assessment of tumor composition for a customized treatment approach. Briefly, this single-cell quantification strategy computes cell barcodes based on at least 100,000 tumor cells from each experiment and reveals a cell-specific signaling signature (CSSS) composed of a set of ongoing processes in each cell. RESULTS Using these CSSS-based barcodes, distinct subpopulations evolving within the tumor in response to an outside influence, like anticancer treatments, were revealed and mapped. Barcodes were further applied to assign targeted drug combinations to each individual tumor to optimize tumor response to therapy. The strategy was validated using TNBC models and patient-derived tumors known to switch phenotypes in response to radiotherapy (RT). CONCLUSIONS We show that a barcode-guided targeted drug cocktail significantly enhances tumor response to RT and prevents regrowth of once-resistant tumors. The strategy presented herein shows promise in preventing cancer treatment resistance, with significant applicability in clinical use.
Collapse
Affiliation(s)
- Heba Alkhatib
- The institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, 9103401, Jerusalem, Israel
| | - Ariel M Rubinstein
- The institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, 9103401, Jerusalem, Israel
| | - Swetha Vasudevan
- The institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, 9103401, Jerusalem, Israel
| | - Efrat Flashner-Abramson
- The institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, 9103401, Jerusalem, Israel
| | - Shira Stefansky
- The institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, 9103401, Jerusalem, Israel
| | - Sangita Roy Chowdhury
- The institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, 9103401, Jerusalem, Israel
| | - Solomon Oguche
- The institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, 9103401, Jerusalem, Israel
| | - Tamar Peretz-Yablonsky
- Sharett Institute of Oncology, Hebrew University-Hadassah Medical Center, 9103401, Jerusalem, Israel
| | - Avital Granit
- Sharett Institute of Oncology, Hebrew University-Hadassah Medical Center, 9103401, Jerusalem, Israel
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Ittai Ben-Porath
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Kim Sheva
- The Legacy Heritage Oncology Center & Dr. Larry Norton Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Faculty of Medicine, 8410101, Beer Sheva, Israel
| | - Jon Feldman
- Sharett Institute of Oncology, Hebrew University-Hadassah Medical Center, 9103401, Jerusalem, Israel
| | - Noa E Cohen
- School of Software Engineering and Computer Science, Azrieli College of Engineering, 9103501, Jerusalem, Israel
| | - Amichay Meirovitz
- The Legacy Heritage Oncology Center & Dr. Larry Norton Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Faculty of Medicine, 8410101, Beer Sheva, Israel.
| | - Nataly Kravchenko-Balasha
- The institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, 9103401, Jerusalem, Israel.
| |
Collapse
|
4
|
Dagan H, Flashner-Abramson E, Vasudevan S, Jubran MR, Cohen E, Kravchenko-Balasha N. Exploring Alzheimer's Disease Molecular Variability via Calculation of Personalized Transcriptional Signatures. Biomolecules 2020; 10:biom10040503. [PMID: 32225014 PMCID: PMC7226317 DOI: 10.3390/biom10040503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/27/2022] Open
Abstract
Despite huge investments and major efforts to develop remedies for Alzheimer’s disease (AD) in the past decades, AD remains incurable. While evidence for molecular and phenotypic variability in AD have been accumulating, AD research still heavily relies on the search for AD-specific genetic/protein biomarkers that are expected to exhibit repetitive patterns throughout all patients. Thus, the classification of AD patients to different categories is expected to set the basis for the development of therapies that will be beneficial for subpopulations of patients. Here we explore the molecular heterogeneity among a large cohort of AD and non-demented brain samples, aiming to address the question whether AD-specific molecular biomarkers can progress our understanding of the disease and advance the development of anti-AD therapeutics. We studied 951 brain samples, obtained from up to 17 brain regions of 85 AD patients and 22 non-demented subjects. Utilizing an information-theoretic approach, we deciphered the brain sample-specific structures of altered transcriptional networks. Our in-depth analysis revealed that 7 subnetworks were repetitive in the 737 diseased and 214 non-demented brain samples. Each sample was characterized by a subset consisting of ~1–3 subnetworks out of 7, generating 52 distinct altered transcriptional signatures that characterized the 951 samples. We show that 30 different altered transcriptional signatures characterized solely AD samples and were not found in any of the non-demented samples. In contrast, the rest of the signatures characterized different subsets of sample types, demonstrating the high molecular variability and complexity of gene expression in AD. Importantly, different AD patients exhibiting similar expression levels of AD biomarkers harbored distinct altered transcriptional networks. Our results emphasize the need to expand the biomarker-based stratification to patient-specific transcriptional signature identification for improved AD diagnosis and for the development of subclass-specific future treatment.
Collapse
Affiliation(s)
- Hila Dagan
- The Rachel and Selim Benin School of Computer Science and Engineering, Hebrew University, Jerusalem 9190416, Israel;
| | - Efrat Flashner-Abramson
- Department for Bio-Medical Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.F.-A.); (S.V.); (M.R.J.)
| | - Swetha Vasudevan
- Department for Bio-Medical Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.F.-A.); (S.V.); (M.R.J.)
| | - Maria R. Jubran
- Department for Bio-Medical Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.F.-A.); (S.V.); (M.R.J.)
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel—Canada, The Hebrew University School of Medicine, Jerusalem 9112102, Israel;
| | - Nataly Kravchenko-Balasha
- Department for Bio-Medical Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.F.-A.); (S.V.); (M.R.J.)
- Correspondence:
| |
Collapse
|
5
|
|
6
|
Personalized disease signatures through information-theoretic compaction of big cancer data. Proc Natl Acad Sci U S A 2018; 115:7694-7699. [PMID: 29976841 DOI: 10.1073/pnas.1804214115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Every individual cancer develops and grows in its own specific way, giving rise to a recognized need for the development of personalized cancer diagnostics. This suggested that the identification of patient-specific oncogene markers would be an effective diagnostics approach. However, tumors that are classified as similar according to the expression levels of certain oncogenes can eventually demonstrate divergent responses to treatment. This implies that the information gained from the identification of tumor-specific biomarkers is still not sufficient. We present a method to quantitatively transform heterogeneous big cancer data to patient-specific transcription networks. These networks characterize the unbalanced molecular processes that deviate the tissue from the normal state. We study a number of datasets spanning five different cancer types, aiming to capture the extensive interpatient heterogeneity that exists within a specific cancer type as well as between cancers of different origins. We show that a relatively small number of altered molecular processes suffices to accurately characterize over 500 tumors, showing extreme compaction of the data. Every patient is characterized by a small specific subset of unbalanced processes. We validate the result by verifying that the processes identified characterize other cancer patients as well. We show that different patients may display similar oncogene expression levels, albeit carrying biologically distinct tumors that harbor different sets of unbalanced molecular processes. Thus, tumors may be inaccurately classified and addressed as similar. These findings highlight the need to expand the notion of tumor-specific oncogenic biomarkers to patient-specific, comprehensive transcriptional networks for improved patient-tailored diagnostics.
Collapse
|
7
|
Kravchenko-Balasha N, Aframian DJ. A novel strategy for diagnosing viral vs
bacterial infection: implications for oral diseases. Oral Dis 2018; 24:491-493. [DOI: 10.1111/odi.12629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 11/26/2022]
Affiliation(s)
- N Kravchenko-Balasha
- Bio-Medical Sciences Department; Institute of Dental Sciences; Faculty of Dental Medicine; The Hebrew University; Jerusalem Israel
| | - DJ Aframian
- Department of Oral Medicine, Sedation and Maxillofacial Imaging; Faculty of Dental Medicine; Hadassah Medical Center; The Hebrew University; Jerusalem Israel
| |
Collapse
|
8
|
Su Y, Shi Q, Wei W. Single cell proteomics in biomedicine: High-dimensional data acquisition, visualization, and analysis. Proteomics 2017; 17. [PMID: 28128880 DOI: 10.1002/pmic.201600267] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 11/11/2022]
Abstract
New insights on cellular heterogeneity in the last decade provoke the development of a variety of single cell omics tools at a lightning pace. The resultant high-dimensional single cell data generated by these tools require new theoretical approaches and analytical algorithms for effective visualization and interpretation. In this review, we briefly survey the state-of-the-art single cell proteomic tools with a particular focus on data acquisition and quantification, followed by an elaboration of a number of statistical and computational approaches developed to date for dissecting the high-dimensional single cell data. The underlying assumptions, unique features, and limitations of the analytical methods with the designated biological questions they seek to answer will be discussed. Particular attention will be given to those information theoretical approaches that are anchored in a set of first principles of physics and can yield detailed (and often surprising) predictions.
Collapse
Affiliation(s)
- Yapeng Su
- NanoSystems Biology Cancer Center, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Qihui Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education), School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wei
- NanoSystems Biology Cancer Center, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA, USA
| |
Collapse
|