1
|
Joshi R, Mukherjee DD, Chakrabarty S, Martin A, Jadhao M, Chakrabarti G, Sarkar A, Ghosh SK. Unveiling the Potential of Unfused Bichromophoric Naphthalimide To Induce Cytotoxicity by Binding to Tubulin: Breaks Monotony of Naphthalimides as Conventional Intercalators. J Phys Chem B 2018; 122:3680-3695. [PMID: 29561610 DOI: 10.1021/acs.jpcb.7b10429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the development of small-molecule drug candidates, naphthalimide-based compounds hold a very important position as potent anticancer agents with considerable safety in drug discoveries. Being synthetically and readily accessible, naphthalimide compounds with planar architecture have been developed mostly as DNA-targeting intercalators. However, in this article, it is demonstrated, for the first time, that an unfused naphthalimide-benzothiazole bichromophoric compound 2-(6-chlorobenzo[ d] thiazol-2-yl)-1 H-benzo[ de] isoquinoline-1,3(2 H)-dione (CBIQD), seems to expand the bioactivity of naphthalimide as anti-mitotic agent also. Preliminary studies demonstrate that CBIQD interferes with human lung cancer (A549) cell proliferation and growth and causes cellular morphological changes. However, the underlying mechanism of its antitumor action and primary cellular target in A549 cells remained skeptical. Confocal microscopy in A549 cells revealed disruption of interphase microtubule (MT) network and formation of aberrant multipolar spindle. Consistent with microscopy results, UV-vis, steady-state fluorescence, and time-resolved fluorescence (TRF) studies demonstrate that CBIQD efficiently binds to tubulin ( Kb = 2.03 × 105 M-1 ± 1.88%), inhibits its polymerization, and depolymerizes preformed microtubules (MTs). Low doses of CBIQD have also shown specificity toward tubulin protein in the presence of a nonspecific protein like bovine serum albumin as well as other cytoskeleton component, actin. The in vitro determination of binding site coupled with in silico studies suggests that CBIQD may prefer to occupy the colchicine binding site. Further, CBIQD perturbed tubulin conformation to some extent and protected ∼1.4 cysteine residues toward chemical modification by 5,5'-dithiobis-2-nitrobenzoic acid. We also suggest the possible mechanism underlying CBIQD-induced cancer cell cytotoxicity: CBIQD, when bound to tubulin, may prevent it to maintain a straight conformation; consequently, the α- and β-heterodimers might be no longer available for MT growth. Thus, the consolidated spectroscopic research described herein explores the potential of CBIQD as a new paradigm in the design and development of novel unfused or nonring-fused naphthalimide-based antimitotic cancer therapeutics in medicinal chemistry research.
Collapse
Affiliation(s)
- Ritika Joshi
- Department of Chemistry , Visvesvaraya National Institute of Technology , Nagpur , Maharashtra 440010 , India
| | - Dipanwita Das Mukherjee
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology , University of Calcutta , 35 Ballygunge Circular Road , Kolkata , West Bengal 700019 , India
| | - Subhendu Chakrabarty
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology , University of Calcutta , 35 Ballygunge Circular Road , Kolkata , West Bengal 700019 , India
| | - Ansie Martin
- CMBL, Department of Biological Sciences , BITS-Pilani , K.K. Birla Goa Campus , Zuarinagar , Goa 403726 , India
| | - Manojkumar Jadhao
- Department of Chemistry , Visvesvaraya National Institute of Technology , Nagpur , Maharashtra 440010 , India
| | - Gopal Chakrabarti
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology , University of Calcutta , 35 Ballygunge Circular Road , Kolkata , West Bengal 700019 , India
| | - Angshuman Sarkar
- CMBL, Department of Biological Sciences , BITS-Pilani , K.K. Birla Goa Campus , Zuarinagar , Goa 403726 , India
| | - Sujit Kumar Ghosh
- Department of Chemistry , Visvesvaraya National Institute of Technology , Nagpur , Maharashtra 440010 , India
| |
Collapse
|