1
|
Verkhratsky A, Li B, Niu J, Lin SS, Su Y, Jin WN, Li Y, Jiang S, Yi C, Shi FD, Tang Y. Neuroglial Advances: New Roles for Established Players. J Neurochem 2025; 169:e70080. [PMID: 40371609 DOI: 10.1111/jnc.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Neuroglial cells perform numerous physiological functions and contribute to the pathogenesis of all diseases of the nervous system. Neuroglial neuroprotection defines the resilience of the nervous tissue to exo- and endogenous pathological challenges, while neuroglial defence determines the progression and outcome of neurological disorders. IN this paper, we overview previously unknown but recently discovered roles of various types of neuroglial cells in diverse physiological and pathological processes. First, we describe the role of ependymal glia in the regulation of cerebrospinal fluid flow from the spinal cord to peripheral tissues through the spinal nerves. This newly discovered pathway provides a highway for the CNS-body volume transmission. Next, we present the mechanism by which astrocytes control migration and differentiation of oligodendrocyte precursor cells (OPCs). In pre- and early postnatal CNS, OPCs migrate using vasculature (which is yet free from glia limitans perivascularis) as a pathfinder. Newly forming astrocytic perivascular endfeet signal (through semaphorin-plexin cascade) to OPCs that detach from the vessels and start to differentiate into myelinating oligodendrocytes. We continue the astrocyte theme by demonstrating the neuroprotective role of APOE-laden astrocytic extracellular vesicles in neuromyelitis optica. Next, we explore the link between astrocytic morphology and stress-induced depression. We discuss the critical role of astrocytic ezrin, the cytosolic linker defining terminal astrocyte arborisation and resilience to stress: overexpression of ezrin in prefrontal cortical astrocytes makes mice resistant to stress, whereas ezrin knockdown increases animals vulnerability to stress. Subsequently, we highlight the pathophysiological role of oligodendroglial lineage in schizophrenia by describing novel hypertrophied OPCs in the post-mortem patient's tissue and in a mouse model with OPCs overexpressing alternative splice variant DISC1-Δ3. These DISC1-Δ3-OPCs demonstrated overactivated Wnt/β-catenin signalling pathway and were sufficient to trigger pathological behaviours. Finally, we deliberate on the pathological role of astrocytic and microglial connexin 43 hemichannels in Alzheimer's disease and present a new formula of Cx43 hemichannel inhibitor with increased blood-brain barrier penetration and brain retention.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Joint Research Centre on Purinergic Signalling of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Neurosciences, University of the Basque Country, Leioa, Bizkaia, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
- Celica, BIOMEDICAL, Technology Park 24, Ljubljana, Slovenia
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jianqin Niu
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Si-Si Lin
- International Joint Research Centre on Purinergic Signalling of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wei-Na Jin
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yifan Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Shihe Jiang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China
| | - Fu-Dong Shi
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Li X, Wang S, Zhang D, Feng Y, Liu Y, Yu W, Cui L, Harkany T, Verkhratsky A, Xia M, Li B. The periaxonal space as a conduit for cerebrospinal fluid flow to peripheral organs. Proc Natl Acad Sci U S A 2024; 121:e2400024121. [PMID: 39485799 PMCID: PMC11551422 DOI: 10.1073/pnas.2400024121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/20/2024] [Indexed: 11/03/2024] Open
Abstract
Mechanisms controlling the movement of the cerebrospinal fluid (CSF) toward peripheral nerves are poorly characterized. We found that, in addition to the foramina Magendie and Luschka for CSF flow toward the subarachnoid space and glymphatic system, CSF outflow could also occur along periaxonal spaces (termed "PAS pathway") from the spinal cord to peripheral organs, such as the liver and pancreas. When interrogating the latter route, we found that serotonin, acting through 5-HT2B receptors expressed in ependymocytes that line the central canal, triggered Ca2+ signals to induce polymerization of F-actin, a cytoskeletal protein, to reduce the volume of ependymal cells. This paralleled an increased rate of PAS-mediated CSF redistribution toward peripheral organs. In the liver, CSF was received by hepatic stellate cells. CSF efflux toward peripheral organs through the PAS pathway represents a mechanism dynamically connecting the nervous system with the periphery. Our findings are compatible with the traditional theory of CSF efflux into the glymphatic system to clear metabolic waste from the cerebral parenchyma. Thus, we extend the knowledge of CSF flow and expand the understanding of connectivity between the CNS and peripheral organs.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang110122, China
- China Medical University Centre of Forensic Investigation, Shenyang110122, China
| | - Siman Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang110122, China
- China Medical University Centre of Forensic Investigation, Shenyang110122, China
| | - Dianjun Zhang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang110122, China
- China Medical University Centre of Forensic Investigation, Shenyang110122, China
| | - Yuliang Feng
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang110122, China
- China Medical University Centre of Forensic Investigation, Shenyang110122, China
| | - Yingyu Liu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang110122, China
- China Medical University Centre of Forensic Investigation, Shenyang110122, China
| | - Weiyang Yu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang110122, China
- China Medical University Centre of Forensic Investigation, Shenyang110122, China
| | - Lulu Cui
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang110122, China
- China Medical University Centre of Forensic Investigation, Shenyang110122, China
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna1090, Austria
- Department of Neuroscience, Biomedicum, Karolinska Institutet, Solna17165, Sweden
| | - Alexei Verkhratsky
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Faculty of Biology, Medicine and Health, The University of Manchester, ManchesterM13 9PL, United Kingdom
- Department of Neurosciences, University of the Basque Country, Leioa48940, Bizkaia, Spain
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, VilniusLT-01102, Lithuania
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang110002, China
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang110122, China
- China Medical University Centre of Forensic Investigation, Shenyang110122, China
| |
Collapse
|
3
|
Suzuki M, Tsuchiko A, Tanaka Y, Matubayasi N, Mogami G, Uozumi N, Takahashi S. Hyper-mobile Water and Raman 2900 cm -1 Peak Band of Water Observed around Backbone Phosphates of Double Stranded DNA by High-Resolution Spectroscopies and MD Structural Feature Analysis of Water. J Phys Chem B 2023; 127:285-299. [PMID: 36573838 DOI: 10.1021/acs.jpcb.2c06952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
High-resolution measurements of microwave dielectric relaxation and Raman spectroscopies for waters in double-stranded (ds) 10-mer DNA solution revealed the presence of hyper-mobile water (HMW) and a marked OH stretching band appearing in the range from 2500 to 3100 cm-1, here called the LA band, at the low wavenumber tail of the major OH stretching band of water. Quantitation of the Raman scattering intensity for ds 10-mer DNA in phosphate or tris(hydroxymethyl)aminomethane (TRIS) buffers showed that the LA band was formed by 2000-3000 water molecules per ds 10-mer DNA, indicating collective OH stretching vibrations of water molecules around the backbone phosphate oxygen atoms. The LA band intensity of ds 10-mer DNA in 10 mM TRIS increased and decreased by 30% with the addition of 2 mM MgCl2 and 2 mM CaCl2, respectively. The LA band intensity and the effect of adding Mg(II) or Ca(II) ions to the band intensity were maintained in the presence of 0.14 M KCl; however, the changes induced by the divalent cations were reduced by half. Molecular dynamics calculations of water molecules around the backbone phosphate groups of ds 10-mer DNA indicate the presence of high-density water and broad regions of fluctuating water density, suggesting that they correspond to HMW and the LA band, respectively.
Collapse
Affiliation(s)
- Makoto Suzuki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira Aobaku, Sendai980-8577, Japan.,Graduate School of Engineering, Tohoku University, 6-6 Aoba Aramaki Aobaku, Sendai980-8579, Japan
| | - Akira Tsuchiko
- Graduate School of Engineering, Tohoku University, 6-6 Aoba Aramaki Aobaku, Sendai980-8579, Japan
| | - Yoshiyuki Tanaka
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahoji Yamashirocho, Tokushima770-8514, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka560-8531, Japan
| | - George Mogami
- Graduate School of Engineering, Tohoku University, 6-6 Aoba Aramaki Aobaku, Sendai980-8579, Japan
| | - Nobuyuki Uozumi
- Graduate School of Engineering, Tohoku University, 6-6 Aoba Aramaki Aobaku, Sendai980-8579, Japan
| | - Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira Aobaku, Sendai980-8577, Japan
| |
Collapse
|
4
|
Abstract
An enormous amount of research has been performed to characterize actin dynamics. Structural biology investigations have determined the localization of main chains and their changes coupled with G (Globular)-F (Filamentous) transformation of actin, whereas local thermal fluctuations that may be caused by free rotations of the tips of side chains are not yet fully investigated. This paper argues if the entropy change of actin accompanied by the G-F transformation is simply attributable to the changes in hydration. It took almost 10 years to understand that the actin filament is semi-flexible. This flexibility was visually confirmed as the development of optical microscope techniques, and the direct observation of actin severing events in the presence of actin binding proteins became possible. Finally, I expect the deep understanding of actin dynamics will lead to the elucidation of self-assembly mechanisms of the living creature.
Collapse
Affiliation(s)
- Fumio Oosawa
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.,Institute of Molecular Biology, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.,Department of Biophysical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
5
|
Kerch G. Distribution of tightly and loosely bound water in biological macromolecules and age-related diseases. Int J Biol Macromol 2018; 118:1310-1318. [PMID: 29981332 DOI: 10.1016/j.ijbiomac.2018.06.187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/21/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023]
Abstract
This mini-review article is focused on publications devoted to the changes in water binding energy and content of bound water in biological tissues during aging processes, when bound water lost from the hydration layer becomes free water. Bound water is released during cataractogenesis. In skin, water bound to proteins and other biomacromolecules becomes more mobile with increasing skin age. Extracellular to intracellular water ratio increases with age and was associated with muscle cell atrophy. Bound water concentration decreases with age in hydrated human bone and can be correlated with the strength and toughness of the bone. Higher fraction of free water in malignant tissues compared to normal tissues was observed. Hydration water mobility is enhanced around tau amyloid fibers. Water plays a decisive role in amyloid formation as entropic driving force. In the natural aging processes dehydration and glycation may be considered as subsequent steps.
Collapse
Affiliation(s)
- G Kerch
- Institute of Polymer Materials, Department of Materials Science and Applied Chemistry, Riga Technical University, Azenes 14/24, Riga, Latvia.
| |
Collapse
|
6
|
Suzuki M, Mogami G, Ohsugi H, Watanabe T, Matubayasi N. Physical driving force of actomyosin motility based on the hydration effect. Cytoskeleton (Hoboken) 2017; 74:512-527. [PMID: 29087038 DOI: 10.1002/cm.21417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 01/20/2023]
Abstract
We propose a driving force hypothesis based on previous thermodynamics, kinetics and structural data as well as additional experiments and calculations presented here on water-related phenomena in the actomyosin systems. Although Szent-Györgyi pointed out the importance of water in muscle contraction in 1951, few studies have focused on the water science of muscle because of the difficulty of analyzing hydration properties of the muscle proteins, actin, and myosin. The thermodynamics and energetics of muscle contraction are linked to the water-mediated regulation of protein-ligand and protein-protein interactions along with structural changes in protein molecules. In this study, we assume the following two points: (1) the periodic electric field distribution along an actin filament (F-actin) is unidirectionally modified upon binding of myosin subfragment 1 (M or myosin S1) with ADP and inorganic phosphate Pi (M.ADP.Pi complex) and (2) the solvation free energy of myosin S1 depends on the external electric field strength and the solvation free energy of myosin S1 in close proximity to F-actin can become the potential force to drive myosin S1 along F-actin. The first assumption is supported by integration of experimental reports. The second assumption is supported by model calculations utilizing molecular dynamics (MD) simulation to determine solvation free energies of a small organic molecule and two small proteins. MD simulations utilize the energy representation method (ER) and the roughly proportional relationship between the solvation free energy and the solvent-accessible surface area (SASA) of the protein. The estimated driving force acting on myosin S1 is as high as several piconewtons (pN), which is consistent with the experimentally observed force.
Collapse
Affiliation(s)
- Makoto Suzuki
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.,Biological and Molecular Dynamics, Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - George Mogami
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Hideyuki Ohsugi
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Takahiro Watanabe
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto, 615-8520, Japan
| |
Collapse
|
7
|
Kikumoto M, Oosawa F. Thermodynamic measurements of actin polymerization with various cation species. Cytoskeleton (Hoboken) 2017; 74:465-471. [PMID: 29080281 DOI: 10.1002/cm.21416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/26/2017] [Accepted: 10/13/2017] [Indexed: 12/28/2022]
Abstract
We measured the critical concentration of actin polymerized with different polymerization ions and bound divalent cations at low temperatures and estimated thermodynamic parameters. The entropy and enthalpy changes of actin polymerization were 36-55 (cal/mol K) and 2-8 (kcal/mol), respectively, with some exceptions. Both the entropy and enthalpy changes of the polymerization of Ca2+ -actin were sensitive to the polymerization ion (K+ or Na+ ): ΔS = 39 or 36 (cal/mol K), ΔΗ= 3.9 or 2.7 (kcal/mol). The entropy and enthalpy changes (cal/mol K, kcal/mol) of Mg2+ -actin were also sensitive to the polymerization ion in the following order: Mg2+ (55, 7.6) > K+ (46, 5.3) > Na+ (38, 2.4). Those values largely decreased and became even negative in the presence of a high concentration (0.1 M) of K+ , which was likely caused by the charge screening effect of that ion.
Collapse
Affiliation(s)
- Mahito Kikumoto
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Fumio Oosawa
- Graduate School of Science, Nagoya University, Professor Emeritus of Nagoya University, Nagoya/Graduate School of Engineering Science, Osaka University, Professor Emeritus of Osaka University, Suita, Japan
| |
Collapse
|
8
|
Fujiwara I, Narita A. Keeping the focus on biophysics and actin filaments in Nagoya: A report of the 2016 "now in actin" symposium. Cytoskeleton (Hoboken) 2017; 74:450-464. [PMID: 28681410 DOI: 10.1002/cm.21384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 01/01/2023]
Abstract
Regulatory systems in living cells are highly organized, enabling cells to response to various changes in their environments. Actin polymerization and depolymerization are crucial to establish cytoskeletal networks to maintain muscle contraction, cell motility, cell division, adhesion, organism development and more. To share and promote the biophysical understanding of such mechanisms in living creatures, the "Now in Actin Study: -Motor protein research reaching a new stage-" symposium was organized at Nagoya University, Japan on 12 and 13, December 2016. The organizers invited emeritus professor of Nagoya and Osaka Universities Fumio Oosawa and leading scientists worldwide as keynote speakers, in addition to poster presentations on cell motility studies by many researchers. Studies employing various biophysical, biochemical, cell and molecular biological and mathematical approaches provided the latest understanding of mechanisms of cell motility functions driven by actin, microtubules, actin-binding proteins, and other motor proteins.
Collapse
Affiliation(s)
- Ikuko Fujiwara
- Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Akihiro Narita
- Structural Biology Research Center and Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Nagoya 464-8601, Japan
| |
Collapse
|