1
|
Lu J, Yang X, Xiao J, Wang Y, Yu Y, Wang Y, Zhang Z, Zou Y, Luan Y. DNA-functionalized cryogel based colorimetric biosensor for sensitive on-site detection of aflatoxin B1 in food samples. Talanta 2024; 275:126122. [PMID: 38663063 DOI: 10.1016/j.talanta.2024.126122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024]
Abstract
Hydrogel biosensors present numerous advantages in food safety analysis owing to their remarkable biocompatibility, cargo-loading capabilities and optical properties. However, the current drawbacks (slow target responsiveness and poor mechanical strength) restricted their further utilization at on-site detection of targets. To address these challenges, a DNA-functionalized cryogel with hierarchical pore structures is constructed to improve the reaction rate and the robustness of hydrogel biosensor. During cryogel preparation, ice crystals serve as templates, shaping interconnected hierarchical microporous structures to enhance mass transfer for faster responses. Meanwhile, in the non-freezing zone, concentrated monomers create a dense cross-linked network, strengthening cryogel matrix strength. Accordingly, a colorimetric biosensor based on DNA cryogel has been developed as a proof of concept for rapid detection of aflatoxin B1 (AFB1) in food samples, and an excellent analytical performance was obtained under the optimized conditions with a low detection limit (1 nM), broad detection range (5-100 nM), satisfactory accuracy and precision (recoveries, 81.2-112.6 %; CV, 2.75-5.53 %). Furthermore, by integrating with a smartphone sensing platform, a portable device was created for rapid on-site measurement of target within 45 min, which provided some insight for hydrogel biosensors design.
Collapse
Affiliation(s)
- Jian Lu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiaofeng Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jiaxuan Xiao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yuhan Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yue Yu
- Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Yuan Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yanmin Zou
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.
| | - Yu Luan
- Zhenjiang Food and Drug Supervision and Inspection Center, Zhenjiang, China.
| |
Collapse
|
2
|
Bisoi A, Sarkar S, Singh PC. Loop nucleobases-dependent folding of G-quadruplex in normal and cancer cell-mimicking KCl microenvironments. Int J Biol Macromol 2024; 265:131050. [PMID: 38522708 DOI: 10.1016/j.ijbiomac.2024.131050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
In this study, the folding of G-quadruplex (G4) from the telomeric DNA sequences having loop nucleobases of different chemical natures, numbers, and arrangements in 10 mM and 100 mM KCl salt conditions mimicking the cancerous and normal KCl salt microenvironments have been investigated. The data suggest that the structure and stability of the G4 are highly dependent on the KCl salt concentration. In general, the conformational flexibility of the folded G4 is higher in KCl salt relevant to cancer than in the normal case for any loop arrangements with the same number of nucleobases. The stability of the G4 decreases with the increase in the number of loop nucleobases for both salt conditions. However, the decrease in the stability of G4 having adenine in the loop region is significantly higher than the case of thymine, particularly more prominent in the KCl salt relevant to the cancer. The topology of the folded G4 and its stability also depend delicately on the permutation of the nucleobases in the loop and the salt concentrations for a particular sequence. The findings indicate that the structure and stability of G4 are noticeably different in KCl salt relevant to physiological and cancer conditions.
Collapse
Affiliation(s)
- Asim Bisoi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sunipa Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Prashant Chandra Singh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
3
|
Zhao L, Ahmed F, Xiong H. An excimer ‘ON OFF’ switch based on telomeric G-quadruplex and rGO for trace thrombin detection. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Liu L, Zhu L, Tong H, Su C, Wells JW, Chalikian TV. Distribution of Conformational States Adopted by DNA from the Promoter Regions of the VEGF and Bcl-2 Oncogenes. J Phys Chem B 2022; 126:6654-6670. [PMID: 36001297 DOI: 10.1021/acs.jpcb.2c04304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employed a previously described procedure, based on circular dichroism (CD) spectroscopy, to quantify the distribution of conformational states adopted by equimolar mixtures of complementary G-rich and C-rich DNA strands from the promoter regions of the VEGF and Bcl-2 oncogenes. Spectra were recorded at different pHs, concentrations of KCl, and temperatures. The temperature dependences of the fractional populations of the duplex, G-quadruplex, i-motif, and coiled conformations of each promoter were then analyzed within the framework of a thermodynamic model to obtain the enthalpy and melting temperature of each folded-to-unfolded transition involved in the equilibrium. A comparison of the conformational data on the VEGF and Bcl-2 DNA with similar results on the c-MYC DNA, which we reported previously, reveals that the distribution of conformational states depends on the specific DNA sequence and is modulated by environmental factors. Under the physiological conditions of room temperature, neutral pH, and elevated concentrations of potassium ions, the duplex conformation coexists with the G-quadruplex conformation in proportions that depend on the sequence. This observed conformational diversity has biological implications, and it further supports our previously proposed thermodynamic hypothesis of gene regulation. In that hypothesis, a specific distribution of duplex and tetraplex conformations in a promoter region is fine-tuned to maintain the healthy level of gene expression. Any deviation from a healthy distribution of conformational states may result in pathology stemming from up- or downregulation of the gene.
Collapse
Affiliation(s)
- Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Legeng Zhu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Haoyuan Tong
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Chongyu Su
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - James W Wells
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
5
|
Chakraborty B, Mandal N, Das N, Samanta N, RoyChaudhuri C. Competitive Impedance Spectroscopy in a Schottky-Contacted ZnO Nanorod Structure for Ultrasensitive and Specific Biosensing in a Physiological Analyte. ACS Sens 2022; 7:1634-1647. [PMID: 35621183 DOI: 10.1021/acssensors.1c02135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To enable detection and discovery of biomarkers, development of label-free, ultrasensitive, and specific sensors is the need of the hour. For addressing this requirement, here, a Schottky-contacted ZnO nanorod biosensor has been demonstrated, which explores the interplay between Schottky junction capacitance and solution resistance, resulting in an interesting sensing principle of competitive impedance spectroscopy. When the transition of dominating impedance occurs from solution resistance to junction capacitance, a notch or a peak appears in the impedance response at a particular frequency (referred to as the corner frequency) depending on the charge of the target molecule. The appearance of the peak or notch acts like an electronic label for selectivity since it is visible only for target molecules even at ultralow concentrations in the physiological analyte, where the magnitude of impedance change overlaps with that for nonspecific molecules. This phenomenon has been successfully applied for the positively charged vascular endothelial growth factor (VEGF) and the negatively charged hepatitis B surface antigen (HBsAg), where the shifts in the higher corner frequencies for 1 aM concentration of the target molecules have been observed to be more than 3 times the changes in the impedance magnitude. Further, the area of the ZnO nanorods was segmented into two zones corresponding to the lower and higher concentration regimes, thereby expanding the dynamic range. To summarize, an ultralow detection limit of 1 aM with a dynamic range up to 1 pM was achieved for VEGF and HBsAg, which is 4 orders of magnitude and 20 times lower than their most sensitive label-free reports, respectively.
Collapse
Affiliation(s)
- Bhaswati Chakraborty
- Department of Electronics and Telecommunication Engineering, Indian Institute of Engineering Science and Technology, Shibpur 711103, West Bengal, India
| | - Naresh Mandal
- School of Electrical Sciences, Indian Institute of Technology Goa, Ponda 403401, Goa, India
| | - Naren Das
- Department of Electronics and Communication Engineering, KL University, Green Fields, Vaddeswaram 522502, Andhra Pradesh, India
| | - Nirmalya Samanta
- Department of Electronics and Communication Engineering, Techno India University, Sector V, Kolkata 700091, West Bengal, India
| | - Chirasree RoyChaudhuri
- Department of Electronics and Telecommunication Engineering, Indian Institute of Engineering Science and Technology, Shibpur 711103, West Bengal, India
| |
Collapse
|
6
|
Tariq N, Kume T, Feroze UN, Macgregor RB. The Pressure Dependence of the Stability of the G-quadruplex Formed by d(TGGGGT). Life (Basel) 2022; 12:life12050765. [PMID: 35629431 PMCID: PMC9144232 DOI: 10.3390/life12050765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/27/2022] Open
Abstract
The G-quadruplex (GQ), a tetrahelix formed by guanine-rich nucleic acid sequences, is a potential drug target for several diseases. Monomolecular GQs are stabilized by guanine tetrads and non-guanine regions that form loops. Hydrostatic pressure destabilizes the folded, monomolecular GQ structures. In this communication, we present data on the effect of pressure on the conformational stability of the tetramolecular GQ, d[5′-TGGGGT-3′]4. This molecule does not have loops linking the tetrads; thus, its physical properties presumably reflect those of the tetrads alone. Understanding the properties of the tetrads will aid in understanding the contribution of the other structural components to the stability of GQ DNA. By measuring UV light absorption, we have studied the effect of hydrostatic pressure on the thermal stability of the tetramolecular d[5′-TGGGGT-3′]4 in the presence of sodium ions. Our data show that, unlike monomolecular GQ, the temperature at which d[5′-TGGGGT-3′]4 dissociates to form the constituent monomers is nearly independent of pressure up to 200 MPa. This implies that there is no net molar volume difference (∆V) between the GQ and the unfolded random-coil states. This finding further suggests that the large negative ∆V values for the unfolding of monomolecular GQ are due to the presence of the loop regions in those structures.
Collapse
|
7
|
Chalikian TV, Macgregor RB. Volumetric Properties of Four-Stranded DNA Structures. BIOLOGY 2021; 10:813. [PMID: 34440045 PMCID: PMC8389613 DOI: 10.3390/biology10080813] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/27/2022]
Abstract
Four-stranded non-canonical DNA structures including G-quadruplexes and i-motifs have been found in the genome and are thought to be involved in regulation of biological function. These structures have been implicated in telomere biology, genomic instability, and regulation of transcription and translation events. To gain an understanding of the molecular determinants underlying the biological role of four-stranded DNA structures, their biophysical properties have been extensively studied. The limited libraries on volume, expansibility, and compressibility accumulated to date have begun to provide insights into the molecular origins of helix-to-coil and helix-to-helix conformational transitions involving four-stranded DNA structures. In this article, we review the recent progress in volumetric investigations of G-quadruplexes and i-motifs, emphasizing how such data can be used to characterize intra-and intermolecular interactions, including solvation. We describe how volumetric data can be interpreted at the molecular level to yield a better understanding of the role that solute-solvent interactions play in modulating the stability and recognition events of nucleic acids. Taken together, volumetric studies facilitate unveiling the molecular determinants of biological events involving biopolymers, including G-quadruplexes and i-motifs, by providing one more piece to the thermodynamic puzzle describing the energetics of cellular processes in vitro and, by extension, in vivo.
Collapse
Affiliation(s)
- Tigran V. Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada;
| | | |
Collapse
|
8
|
Pandya N, Bhagwat SR, Kumar A. Regulatory role of Non-canonical DNA Polymorphisms in human genome and their relevance in Cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188594. [PMID: 34303788 DOI: 10.1016/j.bbcan.2021.188594] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
DNA has the ability to form polymorphic structures like canonical duplex DNA and non-canonical triplex DNA, Cruciform, Z-DNA, G-quadruplex (G4), i-motifs, and hairpin structures. The alteration in the form of DNA polymorphism in the response to environmental changes influences the gene expression. Non-canonical structures are engaged in various biological functions, including chromatin epigenetic and gene expression regulation via transcription and translation, as well as DNA repair and recombination. The presence of non-canonical structures in the regulatory region of the gene alters the gene expression and affects the cellular machinery. Formation of non-canonical structure in the regulatory site of cancer-related genes either inhibits or dysregulate the gene function and promote tumour formation. In the current article, we review the influence of non-canonical structure on the regulatory mechanisms in human genome. Moreover, we have also discussed the relevance of non-canonical structures in cancer and provided information on the drugs used for their treatment by targeting these structures.
Collapse
Affiliation(s)
- Nirali Pandya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Sonali R Bhagwat
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| |
Collapse
|
9
|
Tateishi-Karimata H, Sugimoto N. Roles of non-canonical structures of nucleic acids in cancer and neurodegenerative diseases. Nucleic Acids Res 2021; 49:7839-7855. [PMID: 34244785 PMCID: PMC8373145 DOI: 10.1093/nar/gkab580] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 06/17/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer and neurodegenerative diseases are caused by genetic and environmental factors. Expression of tumour suppressor genes is suppressed by mutations or epigenetic silencing, whereas for neurodegenerative disease-related genes, nucleic acid-based effects may be presented through loss of protein function due to erroneous protein sequences or gain of toxic function from extended repeat transcripts or toxic peptide production. These diseases are triggered by damaged genes and proteins due to lifestyle and exposure to radiation. Recent studies have indicated that transient, non-canonical structural changes in nucleic acids in response to the environment can regulate the expression of disease-related genes. Non-canonical structures are involved in many cellular functions, such as regulation of gene expression through transcription and translation, epigenetic regulation of chromatin, and DNA recombination. Transcripts generated from repeat sequences of neurodegenerative disease-related genes form non-canonical structures that are involved in protein transport and toxic aggregate formation. Intracellular phase separation promotes transcription and protein assembly, which are controlled by the nucleic acid structure and can influence cancer and neurodegenerative disease progression. These findings may aid in elucidating the underlying disease mechanisms. Here, we review the influence of non-canonical nucleic acid structures in disease-related genes on disease onset and progression.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
10
|
Liu L, Scott L, Tariq N, Kume T, Dubins DN, Macgregor RB, Chalikian TV. Volumetric Interplay between the Conformational States Adopted by Guanine-Rich DNA from the c-MYC Promoter. J Phys Chem B 2021; 125:7406-7416. [PMID: 34185535 DOI: 10.1021/acs.jpcb.1c04075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The kinetic and thermodynamic stabilities of G-quadruplex structures have been extensively studied. In contrast, systematic investigations of the volumetric properties of G-quadruplexes determining their pressure stability are still relatively scarce. The G-rich strand from the promoter region of the c-MYC oncogene (G-strand) is known to adopt a range of conformational states including the duplex, G-quadruplex, and coil states depending on the presence of the complementary C-rich strand (C-strand) and solution conditions. In this work, we report changes in volume, ΔV, and adiabatic compressibility, ΔKS, accompanying interconversions of G-strand between the G-quadruplex, duplex, and coil conformations in the presence and absence of C-strand. We rationalize these volumetric characteristics in terms of the hydration and intrinsic properties of the DNA in each of the sampled conformational states. We further use our volumetric results in conjunction with the reported data on changes in expansibility, ΔE, and heat capacity, ΔCP, associated with G-quadruplex-to-coil transitions to construct the pressure-temperature phase diagram describing the stability of the G-quadruplex. The phase diagram is elliptic in shape, resembling the classical elliptic phase diagram of a globular protein, and is distinct from the phase diagram for duplex DNA. The observed similarity of the pressure-temperature phase diagrams of G-quadruplexes and globular proteins stems from their shared structural and hydration features that, in turn, result in the similarity of their volumetric properties. To the best of our knowledge, this is the first pressure-temperature stability diagram reported for a G-quadruplex.
Collapse
Affiliation(s)
- Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Lily Scott
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Nabeel Tariq
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Takuma Kume
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - David N Dubins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Robert B Macgregor
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
11
|
Chalikian TV, Liu L, Macgregor RB. Duplex-tetraplex equilibria in guanine- and cytosine-rich DNA. Biophys Chem 2020; 267:106473. [PMID: 33031980 DOI: 10.1016/j.bpc.2020.106473] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Noncanonical four-stranded DNA structures, including G-quadruplexes and i-motifs, have been discovered in the cell and are implicated in a variety of genomic regulatory functions. The tendency of a specific guanine- and cytosine-rich region of genomic DNA to adopt a four-stranded conformation depends on its ability to overcome the constraints of duplex base-pairing by undergoing consecutive duplex-to-coil and coil-to-tetraplex transitions. The latter ability is determined by the balance between the free energies of participating ordered and disordered structures. In this review, we present an overview of the literature on the stability of G-quadruplex and i-motif structures and discuss the extent of duplex-tetraplex competition as a function of the sequence context of the DNA and environmental conditions including temperature, pH, salt, molecular crowding, and the presence of G-quadruplex-binding ligands. We outline how the results of in vitro studies can be expanded to understanding duplex-tetraplex equilibria in vivo.
Collapse
Affiliation(s)
- Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| | - Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Robert B Macgregor
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
12
|
Li X, Weng C, Wang J, Yang W, Lu Q, Yan X, Sakran MA, Hong J, Zhu W, Zhou X. A label-free electrochemical magnetic aptasensor based on exonuclease III-assisted signal amplification for determination of carcinoembryonic antigen. Mikrochim Acta 2020; 187:492. [PMID: 32770422 DOI: 10.1007/s00604-020-04457-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022]
Abstract
A novel label-free and exonuclease III (Exo III)-assisted signal amplification electrochemical aptasensor was constructed for the determination of carcinoembryonic antigen (CEA) via magnetic field-induced self-assembly of magnetic biocomposites (Fe3O4@Au NPs-S1-S2-S3). The magnetic biocomposites were acquired by modifying double-stranded DNA (S1-S2-S3) on the surface of Fe3O4@Au nanoparticles (Fe3O4@Au NPs). Among them, Fe3O4@Au NPs were used as carriers for magnetic separation, thiolated single-stranded DNA (S1) provided signal sequence, CEA aptamer (S2) worked as a recognition element, and complementary strand (S3) was used to form double strands. In the presence of CEA, S2 bonded with CEA competitively; the exposed S1 could not be cleaved since Exo III was inactive against ssDNA. The G-quadruplex/hemin complexes finally formed with the existence of K+, and the high electrochemical signal of G-quadruplex/hemin complexes was recorded by differential pulse voltammetry (DPV) at - 0.6 V. Conversely, in the absence of CEA, dsDNA was cleaved from the 3' blunt end by Exo III; the disappearance of G-rich sequence blocked the generation of the signal. This method exhibited good selectivity and sensitivity for the determination of CEA; the linear range was from 0.1 to 200 ng mL-1 and the limit of detection was 0.4 pg mL-1. Graphical abstract.
Collapse
Affiliation(s)
- Xiaoyun Li
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Chenyuan Weng
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jing Wang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Wei Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Qiaoyun Lu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Xiaoqiang Yan
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Marwan Ahmad Sakran
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Junli Hong
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Wanying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Xuemin Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
13
|
Bian Y, Song F, Cao Z, Zhao L, Yu J, Guo X, Wang J. Fast-Folding Pathways of the Thrombin-Binding Aptamer G-Quadruplex Revealed by a Markov State Model. Biophys J 2019; 114:1529-1538. [PMID: 29642024 DOI: 10.1016/j.bpj.2018.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 02/12/2018] [Accepted: 02/20/2018] [Indexed: 12/31/2022] Open
Abstract
G-quadruplex structures participate in many important cellular processes. For a better understanding of their functions, knowledge of the mechanism by which they fold into the functional native structures is necessary. In this work, we studied the folding process of the thrombin-binding aptamer G-quadruplex. Enabled by a computational paradigm that couples an advanced sampling method and a Markov state model, four folding intermediates were identified, including an antiparallel G-hairpin, two G-triplex structures, and a double-hairpin conformation. Likewise, a misfolded structure with a nonnative distribution of syn/anti guanines was also observed. Based on these states, a transition path analysis revealed three fast-folding pathways, along which the thrombin-binding aptamer would fold to the native state directly, with no evidence of potential nonnative competing conformations. The results also showed that the TGT-loop plays an important role in the folding process. The findings of this research may provide general insight about the folding of other G-quadruplex structures.
Collapse
Affiliation(s)
- Yunqiang Bian
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China.
| | - Feng Song
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Zanxia Cao
- Department of Physics, Dezhou University, Dezhou, China
| | - Liling Zhao
- Department of Physics, Dezhou University, Dezhou, China
| | - Jiafeng Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Xinlu Guo
- Wuxi Vocational Institute of Commerce, Wuxi, China; Taihu University of Wuxi, Wuxi, China
| | - Jihua Wang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China; Department of Physics, Dezhou University, Dezhou, China.
| |
Collapse
|
14
|
Yu Z, Zhou W, Ma G, Li Y, Fan L, Li X, Lu Y. Insights into the Competition between K+ and Pb2+ Binding to a G-Quadruplex and Discovery of a Novel K+–Pb2+–Quadruplex Intermediate. J Phys Chem B 2018; 122:9382-9388. [DOI: 10.1021/acs.jpcb.8b08161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ze Yu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei Zhou
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ge Ma
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yunchao Li
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Louzhen Fan
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiaohong Li
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yi Lu
- Department of Chemistry, Department of Materials Science and Engineering, University of Illinois at Urbana and Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
15
|
Bian Y, Ren W, Song F, Yu J, Wang J. Exploration of the folding dynamics of human telomeric G-quadruplex with a hybrid atomistic structure-based model. J Chem Phys 2018; 148:204107. [DOI: 10.1063/1.5028498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yunqiang Bian
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Weitong Ren
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Feng Song
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Jiafeng Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Jihua Wang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
16
|
Mayne L, Lin CY, Christie SDR, Siwy ZS, Platt M. The Design and Characterization of Multifunctional Aptamer Nanopore Sensors. ACS NANO 2018; 12:4844-4852. [PMID: 29718658 DOI: 10.1021/acsnano.8b01583] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aptamer-modified nanomaterials provide a simple, yet powerful sensing platform when combined with resistive pulse sensing technologies. Aptamers adopt a more stable tertiary structure in the presence of a target analyte, which results in a change in charge density and velocity of the carrier particle. In practice the tertiary structure is specific for each aptamer and target, and the strength of the signal varies with different applications and experimental conditions. Resistive pulse sensors (RPS) have single particle resolution, allowing for the detailed characterization of the sample. Measuring the velocity of aptamer-modified nanomaterials as they traverse the RPS provides information on their charge state and densities. To help understand how the aptamer structure and charge density effects the sensitivity of aptamer-RPS assays, here we study two metal binding aptamers. This creates a sensor for mercury and lead ions that is capable of being run in a range of electrolyte concentrations, equivalent to river to seawater conditions. The observed results are in excellent agreement with our proposed model. Building on this we combine two aptamers together in an attempt to form a dual sensing strand of DNA for the simultaneous detection of two metal ions. We show experimental and theoretical responses for the aptamer which creates layers of differing charge densities around the nanomaterial. The density and diameter of these zones effects both the viability and sensitivity of the assay. While this approach allows the interrogation of the DNA structure, the data also highlight the limitations and considerations for future assays.
Collapse
Affiliation(s)
- Laura Mayne
- Department of Chemistry , Loughborough University , Loughborough LE11 3TU , United Kingdom
| | | | - Steven D R Christie
- Department of Chemistry , Loughborough University , Loughborough LE11 3TU , United Kingdom
| | | | - Mark Platt
- Department of Chemistry , Loughborough University , Loughborough LE11 3TU , United Kingdom
| |
Collapse
|
17
|
Morgan RK, Molnar MM, Batra H, Summerford B, Wadkins RM, Brooks TA. Effects of 5-Hydroxymethylcytosine Epigenetic Modification on the Stability and Molecular Recognition of VEGF i-Motif and G-Quadruplex Structures. J Nucleic Acids 2018; 2018:9281286. [PMID: 29862069 PMCID: PMC5976936 DOI: 10.1155/2018/9281286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 12/14/2022] Open
Abstract
Promoters often contain asymmetric G- and C-rich strands, in which the cytosines are prone to epigenetic modification via methylation (5-mC) and 5-hydroxymethylation (5-hmC). These sequences can also form four-stranded G-quadruplex (G4) or i-motif (iM) secondary structures. Although the requisite sequences for epigenetic modulation and iM/G4 formation are similar and can overlap, they are unlikely to coexist. Despite 5-hmC being an oxidization product of 5-mC, the two modified bases cluster at distinct loci. This study focuses on the intersection of G4/iM formation and 5-hmC modification using the vascular endothelial growth factor (VEGF) gene promoter's CpG sites and examines whether incorporation of 5-hmC into iM/G4 structures had any physicochemical effect on formation, stability, or recognition by nucleolin or the cationic porphyrin, TMPyP4. No marked changes were found in the formation or stability of iM and G4 structures; however, changes in recognition by nucleolin or TMPyP4 occurred with 5-hmC modification wherein protein and compound binding to 5-hmC modified G4s was notably reduced. G4/iM structures in the VEGF promoter are promising therapeutic targets for antiangiogenic therapy, and this work contributes to a comprehensive understanding of their governing principles related to potential transcriptional control and targeting.
Collapse
Affiliation(s)
- Rhianna K. Morgan
- School of Pharmacy, Department of BioMolecular Sciences, Division of Pharmacology, University of Mississippi, University, MS 38677, USA
| | - Michael M. Molnar
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Harshul Batra
- School of Pharmacy, Department of BioMolecular Sciences, Division of Pharmacology, University of Mississippi, University, MS 38677, USA
| | - Bethany Summerford
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Randy M. Wadkins
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Tracy A. Brooks
- School of Pharmacy, Department of BioMolecular Sciences, Division of Pharmacology, University of Mississippi, University, MS 38677, USA
- School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA
| |
Collapse
|
18
|
Tateishi-Karimata H, Kawauchi K, Sugimoto N. Destabilization of DNA G-Quadruplexes by Chemical Environment Changes during Tumor Progression Facilitates Transcription. J Am Chem Soc 2017; 140:642-651. [DOI: 10.1021/jacs.7b09449] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Aslanyan L, Ko J, Kim BG, Vardanyan I, Dalyan YB, Chalikian TV. Effect of Urea on G-Quadruplex Stability. J Phys Chem B 2017; 121:6511-6519. [DOI: 10.1021/acs.jpcb.7b03479] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lusine Aslanyan
- Department
of Molecular Physics, Faculty of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 375025, Armenia
| | - Jordan Ko
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Byul G. Kim
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Ishkhan Vardanyan
- Department
of Molecular Physics, Faculty of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 375025, Armenia
| | - Yeva B. Dalyan
- Department
of Molecular Physics, Faculty of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 375025, Armenia
| | - Tigran V. Chalikian
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
20
|
Kaplan OI, Berber B, Hekim N, Doluca O. G-quadruplex prediction in E. coli genome reveals a conserved putative G-quadruplex-Hairpin-Duplex switch. Nucleic Acids Res 2016; 44:9083-9095. [PMID: 27596596 PMCID: PMC5100583 DOI: 10.1093/nar/gkw769] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 12/18/2022] Open
Abstract
Many studies show that short non-coding sequences are widely conserved among regulatory elements. More and more conserved sequences are being discovered since the development of next generation sequencing technology. A common approach to identify conserved sequences with regulatory roles relies on topological changes such as hairpin formation at the DNA or RNA level. G-quadruplexes, non-canonical nucleic acid topologies with little established biological roles, are increasingly considered for conserved regulatory element discovery. Since the tertiary structure of G-quadruplexes is strongly dependent on the loop sequence which is disregarded by the generally accepted algorithm, we hypothesized that G-quadruplexes with similar topology and, indirectly, similar interaction patterns, can be determined using phylogenetic clustering based on differences in the loop sequences. Phylogenetic analysis of 52 G-quadruplex forming sequences in the Escherichia coli genome revealed two conserved G-quadruplex motifs with a potential regulatory role. Further analysis revealed that both motifs tend to form hairpins and G quadruplexes, as supported by circular dichroism studies. The phylogenetic analysis as described in this work can greatly improve the discovery of functional G-quadruplex structures and may explain unknown regulatory patterns.
Collapse
Affiliation(s)
- Oktay I Kaplan
- Berlin Institute for Medical Systems Biology, Max Delbrück Center, 13125 Berlin, Germany
- School of Medicine, Istanbul Medeniyet University, 34000 Istanbul, Turkey
| | - Burak Berber
- Department of Biology, Osmangazi University, Eskisehir, 26480, Turkey
| | - Nezih Hekim
- School of Medicine, Istanbul Kemerburgaz University, 34217, Turkey
| | - Osman Doluca
- Department of Biomedical Engineering, Izmir University of Economics, Izmir, 35330, Turkey
| |
Collapse
|