1
|
Cashman-Kadri S, Lagüe P, Subirade M, Fliss I, Beaulieu L. Insights into Molecular Interactions between a GAPDH-Related Fish Antimicrobial Peptide, Analogs Thereof, and Bacterial Membranes. Biochemistry 2024; 63:1257-1269. [PMID: 38683758 PMCID: PMC11112741 DOI: 10.1021/acs.biochem.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Interactions between SJGAP (skipjack tuna GAPDH-related antimicrobial peptide) and four analogs thereof with model bacterial membranes were studied using Fourier-transform infrared spectroscopy (FTIR) and molecular dynamics (MD) simulations. MD trajectory analyses showed that the N-terminal segment of the peptide analogs has many contacts with the polar heads of membrane phospholipids, while the central α helix interacts strongly with the hydrophobic core of the membranes. The peptides also had a marked influence on the wave numbers associated with the phase transition of phospholipids organized as liposomes in both the interface and aliphatic chain regions of the infrared spectra, supporting the interactions observed in the MD trajectories. In addition, interesting links were found between peptide interactions with the aliphatic chains of membrane phospholipids, as determined by FTIR and from the MD trajectories, and the membrane permeabilization capacity of these peptide analogs, as previously demonstrated. To summarize, the combined experimental and computational efforts have provided insights into crucial aspects of the interactions between the investigated peptides and bacterial membranes. This work thus makes an original contribution to our understanding of the molecular interactions underlying the antimicrobial activity of these GAPDH-related antimicrobial peptides from Scombridae.
Collapse
Affiliation(s)
- Samuel Cashman-Kadri
- Institute
of Nutrition and Functional Foods (INAF), Université Laval, Québec, Québec G1V 0A6, Canada
- Department
of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Québec, Québec G1V 0A6, Canada
- Québec-Océan, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Patrick Lagüe
- Department
of Biochemistry, Microbiology and Bioinformatics, Faculty of Sciences
and Engineering, Université Laval, Quebec, Québec G1V 0A6, Canada
- Institute
for Integrative Systems Biology, Pavillon Charles-Eugene-Marchand, Université Laval, 1030 Avenue de la Medecine, Québec, Québec G1V 0A6, Canada
- The
Quebec Network for Research on Protein Function, Engineering, and
Applications (PROTEO), Québec, Québec G1V 0A6, Canada
| | - Muriel Subirade
- Institute
of Nutrition and Functional Foods (INAF), Université Laval, Québec, Québec G1V 0A6, Canada
- Department
of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Ismail Fliss
- Institute
of Nutrition and Functional Foods (INAF), Université Laval, Québec, Québec G1V 0A6, Canada
- Department
of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Lucie Beaulieu
- Institute
of Nutrition and Functional Foods (INAF), Université Laval, Québec, Québec G1V 0A6, Canada
- Department
of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Québec, Québec G1V 0A6, Canada
- Québec-Océan, Université Laval, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
2
|
Breygina M, Voronkov A, Ivanova T, Babushkina K. Fatty Acid Composition of Dry and Germinating Pollen of Gymnosperm and Angiosperm Plants. Int J Mol Sci 2023; 24:ijms24119717. [PMID: 37298668 DOI: 10.3390/ijms24119717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
A pollen grain is a unique haploid organism characterized by a special composition and structure. The pollen of angiosperms and gymnosperms germinate in fundamentally similar ways, but the latter also have important features, including slow growth rates and lower dependence on female tissues. These features are, to some extent, due to the properties of pollen lipids, which perform a number of functions during germination. Here, we compared the absolute content and the fatty acid (FA) composition of pollen lipids of two species of flowering plants and spruce using GC-MS. The FA composition of spruce pollen differed significantly, including the predominance of saturated and monoene FAs, and a high proportion of very-long-chain FAs (VLCFAs). Significant differences between FAs from integumentary lipids (pollen coat (PC)) and lipids of gametophyte cells were found for lily and tobacco, including a very low unsaturation index of the PC. The proportion of VLCFAs in the integument was several times higher than in gametophyte cells. We found that the absolute content of lipids in lily pollen is almost three times higher than in tobacco and spruce pollen. For the first time, changes in the FA composition were analyzed during pollen germination in gymnosperms and angiosperms. The stimulating effect of H2O2 on spruce germination also led to noticeable changes in the FA content and composition of growing pollen. For tobacco in control and test samples, the FA composition was stable.
Collapse
Affiliation(s)
- Maria Breygina
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow 119991, Russia
| | - Alexander Voronkov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, Moscow 127276, Russia
| | - Tatiana Ivanova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, Moscow 127276, Russia
| | - Ksenia Babushkina
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow 119991, Russia
| |
Collapse
|
3
|
Kawaguchi K, Nagao H, Shindou H, Noguchi H. Conformations of Three Types of Ultra-Long-Chain Fatty Acids in Multicomponent Lipid Bilayers. J Phys Chem B 2022; 126:9316-9324. [PMID: 36334092 DOI: 10.1021/acs.jpcb.2c06189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ultra-long-chain fatty acids (ULCFAs) are biosynthesized in certain types of tissues, but their biological roles remain unknown. Here, we report how the conformation of ULCFAs depends on the length and unsaturated-bond ratio of the ultra-long chains and the composition of the host bilayer membrane using molecular dynamics simulations. The ultra-long chain of ULCFAs flips between the two leaflets and fluctuates among three conformations: elongated, L-shaped, and turned. Furthermore, we found that the saturated ultra-long chain exhibited an elongated conformation more frequently than the unsaturated chain. In addition, the truncation of the ultra-long chain at C26 had little effect on the remaining ULCFAs. ULCFAs respond to lipid-density differences in the two leaflets, and the ratio of the elongated and turned conformations changed to reduce this difference. However, in cholesterol-containing membranes, ULCFAs exhibit no density difference after the flip-flop of cholesterol removes the difference.
Collapse
Affiliation(s)
- Kazutomo Kawaguchi
- Institute of Science and Engineering, Kanazawa University, Kanazawa920-1192, Ishikawa, Japan
| | - Hidemi Nagao
- Institute of Science and Engineering, Kanazawa University, Kanazawa920-1192, Ishikawa, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo162-8655, Japan.,Department of Medical Lipid Science, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa277-8581, Chiba, Japan
| |
Collapse
|
4
|
Giwa AS, Ali N. Perspectives of nervonic acid production by Yarrowia lipolytica. Biotechnol Lett 2022; 44:193-202. [PMID: 35119573 DOI: 10.1007/s10529-022-03231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/26/2022] [Indexed: 11/02/2022]
Abstract
Nervonic acid (cis-15-tetracosenoic acid, 24:1Δ15) is a long chain monounsaturated fatty acid, mainly exists in white matt er of the human brains. It plays an important role in the development of nervous system and curing neurological diseases. The limited natural sources and high price are considered limiting factors for the extensive application of nervonic acid. Yarrowia lipolytica is a high lipid producing yeast and engineered strain which can produce nervonic acid. The biosynthesis of nervonic acid has yet to be investigated, although the metabolism has been examined for couple of years. Normally, oleic acid is considered the origin of nervonic acid synthesis through fatty acid prolongation, where malonyl-CoA and acyl-CoA are initially concise by 3-ketoacyl-CoA synthase (KCS). To meet the high requirement of industrial production, the optimization of fermentation and bioreactors configurations are necessary tools to be carried out. This review article summarizes the research literature on advancements and recent trends about the production, synthesis and properties of nervonic acid.
Collapse
Affiliation(s)
- Abdulmoseen Segun Giwa
- School of Human Settlements and Environment, Nanchang Institute of Science and Technology, Nanchang, 330108, China.,State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Nasir Ali
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Tan Q, Wang Y, Zhang G, Lu B, Wang T, Tao T, Wang H, Jiang H, Chen W. The metabolic effects of multi-trace elements on parenteral nutrition for critically ill pediatric patients: a randomized controlled trial and metabolomic research. Transl Pediatr 2021; 10:2579-2593. [PMID: 34765482 PMCID: PMC8578764 DOI: 10.21037/tp-21-456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND We investigated the efficacy and metabolic dose-effect of multi-trace element injection I [MTEI-(I)] for severe pediatric patients via a parallel, randomized control study. METHODS The inclusion criteria were as follows: (I) patients who required parenteral nutrition (PN) due to various diseases, and were expected to receive PN for >5 days; (II) patients aged <18 years; (III) patients with no serious cardiac, hepatic, renal, or pulmonary dysfunction; and (IV) patients with an established central venous pathway. Enrolled patients were randomly assigned into two groups using sequentially numbered, sealed, opaque envelopes: Group A (low-dose group) received MTEI-(I) at 1 mL/kg/d, and Group B (high-dose group) received MTEI-(I) at 2 mL/kg/d, up to a maximum dose of 15 mL/d. The concentrations of manganese (Mn), copper (Cu), zinc (Zn), and selenium (Se) were detected. The following indexes were measured after 5 days of treatment (T5): β-oxidation of very-long-chain fatty acids, arginine and proline metabolism, pentose phosphate metabolism, ketone body metabolism, citric acid cycle, purine metabolism, caffeine metabolism, and pyruvate metabolism. The participants, care givers, and data analysis staff were blinded to the group assignment. RESULTS Overall, at T5, Mn and Cu levels were decreased, while Zn and Se levels were increased. The increase of Zn levels (A: 0.170±0.479 vs. B: 0.193±0.900) and decrease of Cu levels (A: -0.240±0.382 vs. B: -0.373±0.465) of patients in Group B (n=22) were significantly higher than those in Group A (n=18). At T5, the β-oxidation of very-long-chain fatty acids, arginine and proline metabolism, pentose phosphate metabolism, ketone body metabolism, citric acid cycle, purine metabolism, caffeine metabolism, and pyruvate metabolism were variably decreased (P<0.05) in Group B compared to Group A. CONCLUSIONS Our results suggested that the high-dose administration of MTEI-(I) is safe for severe pediatric patients, and may alleviate inflammation and antioxidation, relieve hyperactivity caused by stress, and improve tissues-based hypoxia and renal function. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2100052198.
Collapse
Affiliation(s)
- Qingti Tan
- Pediatric Intensive Care Unit, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Wang
- Institute for Emergency and Disaster Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Institute for Emergency and Disaster Medicine, Chinese Academy of Science Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Guoying Zhang
- Pediatric Intensive Care Unit, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bin Lu
- Pediatric Intensive Care Unit, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Wang
- Pediatric Intensive Care Unit, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Tao
- Pediatric Intensive Care Unit, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - He Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Jiang
- Institute for Emergency and Disaster Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Institute for Emergency and Disaster Medicine, Chinese Academy of Science Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Wei Chen
- Department of Clinical Nutrition, Department of Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Gurtovenko AA, Karttunen M. How to control interactions of cellulose-based biomaterials with skin: the role of acidity in the contact area. SOFT MATTER 2021; 17:6507-6518. [PMID: 34100057 DOI: 10.1039/d1sm00608h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Being able to control the interactions of biomaterials with living tissues and skin is highly desirable for many biomedical applications. This is particularly the case for cellulose-based materials which provide one of the most versatile platforms for tissue engineering due to their strength, biocompatibility and abundance. Achieving such control, however, requires detailed molecular-level knowledge of the dominant interaction mechanisms. Here, we employed both biased and unbiased atomic-scale molecular dynamics simulations to explore how cellulose crystals interact with model stratum corneum bilayers, ternary mixtures of ceramides, cholesterol, and free fatty acids. Our findings show that acidity in the contact area directly affects binding between cellulose and the stratum corneum bilayer: Protonation of free fatty acids in the bilayer promotes attractive cellulose-bilayer interactions. We identified two major factors that control the cellulose-skin interactions: (i) the electrostatic repulsion between a cellulose crystal and the charged (anionic due to deprotonated fatty acids) surface of a stratum corneum bilayer and (ii) the cellulose-stratum corneum hydrogen bonding. When less than half of the fatty acids in the bilayer are protonated, the first factor dominates and there is no binding to skin. At a larger degree of fatty acid protonation the cellulose-stratum corneum hydrogen bonding prevails yielding a tight binding. Remarkably, we found that ceramide molecules are the key component in hydrogen bonding with cellulose. Overall, our findings highlight the critical role of fatty acid protonation in biomaterial-stratum corneum interactions and can be used for optimizing the surface properties of cellulose-based materials aimed at biomedical applications such as wound dressings.
Collapse
Affiliation(s)
- Andrey A Gurtovenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect V.O. 31, St. Petersburg 199004, Russia.
| | - Mikko Karttunen
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect V.O. 31, St. Petersburg 199004, Russia. and Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada and Department of Applied Mathematics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada and The Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5K7, Canada
| |
Collapse
|
7
|
Pradhan AJ, Lu D, Parisi LR, Shen S, Berhane IA, Galster SL, Bynum K, Monje-Galvan V, Gokcumen O, Chemler SR, Qu J, Kay JG, Atilla-Gokcumen GE. Protein acylation by saturated very long chain fatty acids and endocytosis are involved in necroptosis. Cell Chem Biol 2021; 28:1298-1309.e7. [PMID: 33848465 DOI: 10.1016/j.chembiol.2021.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/17/2021] [Accepted: 03/18/2021] [Indexed: 01/02/2023]
Abstract
Necroptosis is a form of cell death characterized by receptor-interacting protein kinase activity and plasma membrane permeabilization via mixed-lineage kinase-like protein (MLKL). This permeabilization is responsible for the inflammatory properties of necroptosis. We previously showed that very long chain fatty acids (VLCFAs) are functionally involved in necroptosis, potentially through protein fatty acylation. Here, we define the scope of protein acylation by saturated VLCFAs during necroptosis. We show that MLKL and phosphoMLKL, key for membrane permeabilization, are exclusively acylated during necroptosis. Reducing the levels of VLCFAs decreases their membrane recruitment, suggesting that acylation by VLCFAs contributes to their membrane localization. Acylation of phosphoMLKL occurs downstream of phosphorylation and oligomerization and appears to be, in part, mediated by ZDHHC5 (a palmitoyl transferase). We also show that disruption of endosomal trafficking increases cell viability during necroptosis, possibly by preventing recruitment, or removal, of phosphoMLKL from the plasma membrane.
Collapse
Affiliation(s)
- Apoorva J Pradhan
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Daniel Lu
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Laura R Parisi
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Ilyas A Berhane
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Samuel L Galster
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Kiana Bynum
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Viviana Monje-Galvan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Sherry R Chemler
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Jason G Kay
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
8
|
Kawaguchi K, Nakagawa KM, Nakagawa S, Shindou H, Nagao H, Noguchi H. Conformation of ultra-long-chain fatty acid in lipid bilayer: Molecular dynamics study. J Chem Phys 2020; 153:165101. [PMID: 33138431 DOI: 10.1063/5.0026030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ultra-long-chain fatty acids (ULCFAs) are biosynthesized in the restricted tissues such as retina, testis, and skin. The conformation of a single ULCFA, in which the sn-1 unsaturated chain has 32 carbons, in three types of phospholipid bilayers is studied by molecular dynamics simulations. It is found that the ultra-long tail of the ULCFA flips between two leaflets and fluctuates among an elongation into the opposite leaflet, lies between two leaflets, and turns back. As the number ratio of lipids in the opposite leaflet increases, the ratio of the elongated shape linearly decreases in all three cases. Thus, ULCFAs can sense the density differences between the two leaflets and respond to these changes.
Collapse
Affiliation(s)
- Kazutomo Kawaguchi
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Koh M Nakagawa
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Satoshi Nakagawa
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Hidemi Nagao
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
9
|
Discovery of broad-spectrum fungicides that block septin-dependent infection processes of pathogenic fungi. Nat Microbiol 2020; 5:1565-1575. [PMID: 32958858 DOI: 10.1038/s41564-020-00790-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 11/09/2022]
Abstract
Many pathogenic fungi depend on the development of specialized infection structures called appressoria to invade their hosts and cause disease. Impairing the function of fungal infection structures therefore provides a potential means by which diseases could be prevented. In spite of this extraordinary potential, however, relatively few anti-penetrant drugs have been developed to control fungal diseases, of either plants or animals. In the present study, we report the identification of compounds that act specifically to prevent fungal infection. We found that the organization of septin GTPases, which are essential for appressorium-mediated infection in the rice blast fungus Magnaporthe oryzae, requires very-long-chain fatty acids (VLCFAs), which act as mediators of septin organization at membrane interfaces. VLCFAs promote septin recruitment to curved plasma membranes and depletion of VLCFAs prevents septin assembly and host penetration by M. oryzae. We observed that VLCFA biosynthesis inhibitors not only prevent rice blast disease, but also show effective, broad-spectrum fungicidal activity against a wide range of fungal pathogens of maize, wheat and locusts, without affecting their respective hosts. Our findings reveal a mechanism underlying septin-mediated infection structure formation in fungi and provide a class of fungicides to control diverse diseases of plants and animals.
Collapse
|
10
|
Schmidt WF, Chen F, Broadhurst CL, Nguyen JK, Qin J, Chao K, Kim MS. GTRS and 2D-NMR studies of alpha and gamma linolenic acids each containing the same H2C14-(H–C C–H)–C11H2–(H–C C–H)–C8H2 moiety. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Richard-Lacroix M, Umuhire KN, Lister E, Pellerin C, Badia A. Selective Isotopic Labeling Resolves the Gel-to-Fluid Phase Transitions of the Individual Leaflets of a Planar-Supported Phospholipid Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9912-9922. [PMID: 31277548 DOI: 10.1021/acs.langmuir.9b00747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Knowledge of the thermotropic phase behavior of solid-supported bilayer lipid assemblies is essential to mimick the molecular organization and lateral fluidity of cell membranes. The gel-to-fluid phase transitions in a homologous series of single phospholipid bilayers supported on planar silicon substrates were investigated by temperature-controlled atomic force microscopy and attenuated total reflection infrared spectroscopy to obtain complementary information at the mesoscopic and molecular scales. Symmetric bilayers of dipalmitoylphosphatidylcholine (DPPC) and vertically asymmetric bilayers composed of a leaflet of DPPC and another of acyl-chain-deuterated DPPC (DPPC-d62) were prepared by the Langmuir-Blodgett technique. The selective deuteration of one of the bilayer leaflets enabled the simultaneous monitoring by IR spectroscopy of the acyl chain melting in each leaflet via the spectrally isolated CH2 and CD2 stretching vibrations. Two gel-to-fluid transitions were discerned for both the symmetric and asymmetric bilayers in ultrapure water. The deuterium isotope effect observed in free-standing membranes was maintained for the supported bilayers. IR spectroscopy revealed that the melting of one leaflet promotes the disordering of the acyl chains in the adjacent one. The findings suggest that the two leaflet phase transitions do not evolve in isolation. This work sheds insight into the nature of leaflet-leaflet interactions and the thermodynamic properties of surface-confined phospholipid bilayers.
Collapse
Affiliation(s)
- Marie Richard-Lacroix
- Département de chimie, Centre québécois sur les matériaux fonctionnels , Université de Montréal , C.P. 6128, succursale Centre-ville , Montréal , QC H3C 3J7 , Canada
| | - Kayiganwa Natyvella Umuhire
- Département de chimie, Centre québécois sur les matériaux fonctionnels , Université de Montréal , C.P. 6128, succursale Centre-ville , Montréal , QC H3C 3J7 , Canada
| | - Eugénie Lister
- Département de chimie, Centre québécois sur les matériaux fonctionnels , Université de Montréal , C.P. 6128, succursale Centre-ville , Montréal , QC H3C 3J7 , Canada
| | - Christian Pellerin
- Département de chimie, Centre québécois sur les matériaux fonctionnels , Université de Montréal , C.P. 6128, succursale Centre-ville , Montréal , QC H3C 3J7 , Canada
| | - Antonella Badia
- Département de chimie, Centre québécois sur les matériaux fonctionnels , Université de Montréal , C.P. 6128, succursale Centre-ville , Montréal , QC H3C 3J7 , Canada
| |
Collapse
|
12
|
Wang E, Klauda JB. Models for the Stratum Corneum Lipid Matrix: Effects of Ceramide Concentration, Ceramide Hydroxylation, and Free Fatty Acid Protonation. J Phys Chem B 2018; 122:11996-12008. [DOI: 10.1021/acs.jpcb.8b06188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Raghunathan K, Kenworthy AK. Dynamic pattern generation in cell membranes: Current insights into membrane organization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2018-2031. [PMID: 29752898 DOI: 10.1016/j.bbamem.2018.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
It has been two decades since the lipid raft hypothesis was first presented. Even today, whether these nanoscale cholesterol-rich domains are present in cell membranes is not completely resolved. However, especially in the last few years, a rich body of literature has demonstrated both the presence and the importance of non-random distribution of biomolecules on the membrane, which is the focus of this review. These new developments have pushed the experimental limits of detection and have brought us closer to observing lipid domains in the plasma membrane of live cells. Characterization of biomolecules associated with lipid rafts has revealed a deep connection between biological regulation and function and membrane compositional heterogeneities. Finally, tantalizing new developments in the field have demonstrated that lipid domains might not just be associated with the plasma membrane of eukaryotes but could potentially be a ubiquitous membrane-organizing principle in several other biological systems. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.
Collapse
Affiliation(s)
- Krishnan Raghunathan
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, PA 15224, USA.
| | - Anne K Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
14
|
Wang E, Klauda JB. Simulations of Pure Ceramide and Ternary Lipid Mixtures as Simple Interior Stratum Corneum Models. J Phys Chem B 2018; 122:2757-2768. [DOI: 10.1021/acs.jpcb.8b00348] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Doroudgar M, Lafleur M. Ceramide-C16 Is a Versatile Modulator of Phosphatidylethanolamine Polymorphism. Biophys J 2017; 112:2357-2366. [PMID: 28591608 DOI: 10.1016/j.bpj.2017.04.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022] Open
Abstract
Ceramide-C16 (CerC16) is a sphingolipid associated with several diseases like diabetes, obesity, Parkinson disease, and certain types of cancers. As a consequence, research efforts are devoted to identify the impact of CerC16 on the behavior of membranes, and to understand how it is involved in these diseases. In this work, we investigated the impacts of CerC16 (up to 20 mol %) on the lipid polymorphism of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), using differential scanning calorimetry, and sequential 2H and 31P solid-state nuclear magnetic resonance spectroscopy. A partial phase diagram is proposed. The results indicate that the presence of CerC16 leads to an upshift of the temperature of the gel-to-liquid crystalline (Lβ - Lα) phase transition, leading to a large Lβ/Lα phase coexistence region where gel-phase domains contain ∼35 mol % CerC16. It also leads to a downshift of the temperature of the lamellar-to-inverted hexagonal (L - HII) phase transition of POPE. The opposite influence on the two-phase transitions of POPE brings a three-phase coexistence line when the two transitions overlap. The resulting HII phase can be ceramide enriched, coexisting with a Lα phase, or ceramide depleted, coexisting with a Lβ phase, depending on the CerC16 proportions. The uncommon capability of CerC16 to modulate the membrane fluidity, its curvature propensity, and the membrane interface properties highlights its potential as a versatile messenger in cell membrane events.
Collapse
Affiliation(s)
- Mahmoudreza Doroudgar
- Department of Chemistry, Université de Montréal, Succursale Centre-Ville, Montréal, Québec, Canada
| | - Michel Lafleur
- Department of Chemistry, Université de Montréal, Succursale Centre-Ville, Montréal, Québec, Canada.
| |
Collapse
|
16
|
Schroeter A, Stahlberg S, Školová B, Sonnenberger S, Eichner A, Huster D, Vávrová K, Hauß T, Dobner B, Neubert RHH, Vogel A. Phase separation in ceramide[NP] containing lipid model membranes: neutron diffraction and solid-state NMR. SOFT MATTER 2017; 13:2107-2119. [PMID: 28225091 DOI: 10.1039/c6sm02356h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The stratum corneum is the outermost layer of the skin and protects the organism against external influences as well as water loss. It consists of corneocytes embedded in a mixture of ceramides, fatty acids, and cholesterol in a molar ratio of roughly 1 : 1 : 1. The unique structural and compositional arrangement of these stratum corneum lipids is responsible for the skin barrier properties. Many studies investigated the organization of these barrier lipids and, in particular, the exact conformation of ceramides. However, so far no consensus has been reached. In this study, we investigate a model system comprised of N-(non-hydroxy-tetracosanoyl)-phytosphingosine/cholesterol/tetracosanoic acid (CER[NP]-C24/CHOL/TA) at a 1 : 1 : 1 molar ratio using neutron diffraction and 2H solid-state NMR spectroscopy at temperatures from 25 °C to 80 °C. Deuterated variants of all three lipid components of the model system were used to enable their separate investigation in the NMR spectra and quantification of the amount of molecules in each phase. Neutron scattering experiments show the coexistence of two lipid phases at low temperatures with repeat spacings of 54.2 Å and 43.0 Å at a physiological skin temperature of 32 °C. They appear to be indistinguishable in the 2H NMR spectra as both phases are crystalline and ceramide molecules do not rotate around their long axis on a microsecond timescale. The evolution of these phases upon heating is followed and with increasing temperature fluid and even isotropically mobile molecules are observed. A model of the organization of the lamellar phases is proposed in which the thicker phase consists of CER[NP]-C24 in a hairpin conformation mixed with CHOL and TA, while the phase with a repeat spacing of 43.0 Å contains CER[NP]-C24 in a V-shape conformation.
Collapse
Affiliation(s)
- Annett Schroeter
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sören Stahlberg
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany.
| | - Barbora Školová
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany. and Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Stefan Sonnenberger
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Adina Eichner
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany.
| | - Kateřina Vávrová
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Thomas Hauß
- Institute of Soft Matter and Functional Materials, Helmholtz-Zentrum für Materialien und Energie, Berlin, Germany
| | - Bodo Dobner
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Reinhard H H Neubert
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany and Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexander Vogel
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany.
| |
Collapse
|
17
|
Manna M, Javanainen M, Monne HMS, Gabius HJ, Rog T, Vattulainen I. Long-chain GM1 gangliosides alter transmembrane domain registration through interdigitation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:870-878. [PMID: 28143757 DOI: 10.1016/j.bbamem.2017.01.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/02/2017] [Accepted: 01/27/2017] [Indexed: 12/25/2022]
Abstract
Extracellular and cytosolic leaflets in cellular membranes are distinctly different in lipid composition, yet they contribute together to signaling across the membranes. Here we consider a mechanism based on long-chain gangliosides for coupling the extracellular and cytosolic membrane leaflets together. Based on atomistic molecular dynamics simulations, we find that long-chain GM1 in the extracellular leaflet exhibits a strong tendency to protrude into the opposing bilayer leaflet. This interdigitation modulates the order in the cytosolic monolayer and thereby strengthens the interaction and coupling across a membrane. Coarse-grained simulations probing longer time scales in large membrane systems indicate that GM1 in the extracellular leaflet modulates the phase behavior in the cytosolic monolayer. While short-chain GM1 maintains phase-symmetric bilayers with a strong membrane registration effect, the situation is altered with long-chain GM1. Here, the significant interdigitation induced by long-chain GM1 modulates the behavior in the cytosolic GM1-free leaflet, weakening and slowing down the membrane registration process. The observed physical interaction mechanism provides a possible means to mediate or foster transmembrane communication associated with signal transduction.
Collapse
Affiliation(s)
- Moutusi Manna
- Department of Physics, Tampere University of Technology, P. O. Box 692, FI- 33101 Tampere, Finland
| | - Matti Javanainen
- Department of Physics, Tampere University of Technology, P. O. Box 692, FI- 33101 Tampere, Finland; Department of Physics, POB 64, FI-00014 University of Helsinki, Finland
| | - Hector Martinez-Seara Monne
- Department of Physics, Tampere University of Technology, P. O. Box 692, FI- 33101 Tampere, Finland; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, CZ-16610, Prague, Czech Republic
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig Maximilian University, D-80539 Munchen, Germany
| | - Tomasz Rog
- Department of Physics, Tampere University of Technology, P. O. Box 692, FI- 33101 Tampere, Finland; Department of Physics, POB 64, FI-00014 University of Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, P. O. Box 692, FI- 33101 Tampere, Finland; Department of Physics, POB 64, FI-00014 University of Helsinki, Finland; MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
18
|
Fujimoto T, Parmryd I. Interleaflet Coupling, Pinning, and Leaflet Asymmetry-Major Players in Plasma Membrane Nanodomain Formation. Front Cell Dev Biol 2017; 4:155. [PMID: 28119914 PMCID: PMC5222840 DOI: 10.3389/fcell.2016.00155] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/27/2016] [Indexed: 01/26/2023] Open
Abstract
The plasma membrane has a highly asymmetric distribution of lipids and contains dynamic nanodomains many of which are liquid entities surrounded by a second, slightly different, liquid environment. Contributing to the dynamics is a continuous repartitioning of components between the two types of liquids and transient links between lipids and proteins, both to extracellular matrix and cytoplasmic components, that temporarily pin membrane constituents. This make plasma membrane nanodomains exceptionally challenging to study and much of what is known about membrane domains has been deduced from studies on model membranes at equilibrium. However, living cells are by definition not at equilibrium and lipids are distributed asymmetrically with inositol phospholipids, phosphatidylethanolamines and phosphatidylserines confined mostly to the inner leaflet and glyco- and sphingolipids to the outer leaflet. Moreover, each phospholipid group encompasses a wealth of species with different acyl chain combinations whose lateral distribution is heterogeneous. It is becoming increasingly clear that asymmetry and pinning play important roles in plasma membrane nanodomain formation and coupling between the two lipid monolayers. How asymmetry, pinning, and interdigitation contribute to the plasma membrane organization is only beginning to be unraveled and here we discuss their roles and interdependence.
Collapse
Affiliation(s)
- Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Ingela Parmryd
- Science for Life Laboratory, Medical Cell Biology, Uppsala University Uppsala, Sweden
| |
Collapse
|
19
|
Fujimoto T, Parmryd I. Interleaflet Coupling, Pinning, and Leaflet Asymmetry-Major Players in Plasma Membrane Nanodomain Formation. Front Cell Dev Biol 2016. [PMID: 28119914 DOI: 10.3389/fcell.2016.0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
The plasma membrane has a highly asymmetric distribution of lipids and contains dynamic nanodomains many of which are liquid entities surrounded by a second, slightly different, liquid environment. Contributing to the dynamics is a continuous repartitioning of components between the two types of liquids and transient links between lipids and proteins, both to extracellular matrix and cytoplasmic components, that temporarily pin membrane constituents. This make plasma membrane nanodomains exceptionally challenging to study and much of what is known about membrane domains has been deduced from studies on model membranes at equilibrium. However, living cells are by definition not at equilibrium and lipids are distributed asymmetrically with inositol phospholipids, phosphatidylethanolamines and phosphatidylserines confined mostly to the inner leaflet and glyco- and sphingolipids to the outer leaflet. Moreover, each phospholipid group encompasses a wealth of species with different acyl chain combinations whose lateral distribution is heterogeneous. It is becoming increasingly clear that asymmetry and pinning play important roles in plasma membrane nanodomain formation and coupling between the two lipid monolayers. How asymmetry, pinning, and interdigitation contribute to the plasma membrane organization is only beginning to be unraveled and here we discuss their roles and interdependence.
Collapse
Affiliation(s)
- Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Ingela Parmryd
- Science for Life Laboratory, Medical Cell Biology, Uppsala University Uppsala, Sweden
| |
Collapse
|