1
|
Yadav N, Chahar D, Bisht M, Venkatesu P. Assessing the compatibility of choline-based deep eutectic solvents for the structural stability and activity of cellulase: Enzyme sustain at high temperature. Int J Biol Macromol 2023; 249:125988. [PMID: 37499720 DOI: 10.1016/j.ijbiomac.2023.125988] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
As a new generation of 'green solvents' deep eutectic solvents (DESs) represents a promising alternative to the conventional solvents. Their environmental-benign nature and designer properties promote their utility in biocatalysis. Enzymes are marginally stable when exposed to physical/chemical disturbances. One such enzyme is cellulase which is a propitious catalyst for the depolymerization of cellulose under mild conditions. Therefore, their stability is a prerequisite condition to match demands of biorefineries. To address this issue of low stability, activity and thermal denaturation of cellulase, there is a need to find a sustainable and suitable co-solvent that is biocompatible with enzymes ultimately to facilitate their application in bio-industries. In this regard, we synthesized three choline-based DESs, choline chloride (ChCl)-glycerol, ChCl-ethylene glycol and ChCl-lactic acid and employed them to analyze their suitability for cellulase. The present study systematically evaluates the influence of the mentioned DESs on stability, activity and thermal stability of cellulase with the help of various spectroscopic techniques. The spectroscopic analysis revealed that the structural stability and activity of the enzyme were improved in presence of ChCl-glycerol and ChCl-ethylene glycol. The thermal stability was also very well maintained in both the DESs. Interestingly, the relative activity of cellulase was >80 % even after incubation at 50 °C after 48 h for both the DESs. This activity preservation behaviour was more pronounced for ChCl-ethylene glycol than ChCl-glycerol. Moreover, temperature variations studies also reveal promising results by maintain conformational intactness. On the other side, ChCl-lactic acid showed a deleterious effect on the enzyme both structurally as well as thermally. The dynamic light scattering (DLS) analysis provides more specific information about the negative influence of ChCl-lactic acid towards cellulase native structure. This DES induces unavoidable alterations in the enzyme structure which leads to the unfolding of enzyme, ultimately, destabilizing it. Overall, our results present a physical insight into how the enzyme stability and activity depend on the nature of DES. Also, the findings will help to facilitate the development and application of DESs as biocatalytic process.
Collapse
Affiliation(s)
- Niketa Yadav
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Deepak Chahar
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Meena Bisht
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110 007, India
| | | |
Collapse
|
2
|
Yadav N, Mor S, Venkatesu P. The attenuating ability of deep eutectic solvents towards the carboxylated multiwalled carbon nanotubes induced denatured β-lactoglobulin structure. Phys Chem Chem Phys 2023. [PMID: 37470288 DOI: 10.1039/d3cp02908e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The stabilization of proteins has been a major challenge for their practical utilization in industrial applications. Proteins can easily lose their native conformation in the presence of denaturants, which unfolds the protein structure. Since the introduction of deep eutectic solvents (DESs), there are numerous studies in which DESs act as promising co-solvents that are biocompatible with biomolecules. DESs have emerged as sustainable biocatalytic media and an alternative to conventional organic solvents and ionic liquids (ILs). However, the superiority of DESs over the deleterious influence of denaturants on proteins is often neglected. To address this, we present the counteracting ability of biocompatible DESs, namely, choline chloride-glycerol (DES-1) and choline chloride-urea (DES-2), against the structural changes induced in β-lactoglobulin (Blg) by carboxylated multiwalled carbon nanotubes (CA-MWCNTs). The work is substantiated with various spectroscopic and thermal studies. The spectroscopic results revealed that the fluorescence emission intensity enhances for the protein in DESs. Contrary to this, the emission intensity extremely quenches in the presence of CA-MWCNTs. However, in the mixture of DESs and CA-MWCNTs, there was a slight increase in the fluorescence intensity. Circular dichroism spectral studies reflect the reappearance of the native band that was lost in the presence of CA-MWCNTs, which is a good indicator of the counteraction ability of DESs. Further, thermal fluorescence studies showed that the protein exhibited extremely great thermal stability in both DESs as well as in the mixture of DES-CA-MWCNTs compared to the protein in buffer. This study is also supported by dynamic light scattering and zeta potential measurements; the results reveal that DESs were successfully able to maintain the protein structure. The addition of CA-MWCNTs results in complex formation with the protein, which is indicated by the increased hydrodynamic size of the protein. The presence of DESs in the mixture of CA-MWCNTs and DESs was quite successful in eliminating the negative impact of CA-MWCNTs on protein structural alteration. DES-1 proved to be superior to DES-2 over counteraction against CA-MWCNTs and maintained the native conformation of the protein. Overall, both DESs act as recoiling media for both native and unfolded (denatured by CA-MWCNTs) Blg structures. Both the DESs can be described as potential co-solvents for Blg with increased structural and thermal stability of the protein. To the best of our knowledge, this study for the first time has demonstrated the role of choline-based DESs in the mixture with CA-MWCNTs in the structural transition of Blg. The DESs in the mixture successfully enhance the stability of the protein by reducing the perturbation caused by CA-MWCNTs and then amplifying the advantages of the DESs present in the mixture. Overall, these results might find implications for understanding the role of DES-CA-MWCNT mixtures in protein folding/unfolding and pave a new direction for the development of eco-friendly protein-protective solvents.
Collapse
Affiliation(s)
- Niketa Yadav
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | - Sanjay Mor
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | - Pannuru Venkatesu
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
3
|
Joshi A, Kishore N. Macromolecular crowding and preferential exclusion counteract the effect of protein denaturant: Biophysical aspects. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Das N, Yadav S, Negi KS, Tariff E, Sen P. Microsecond Active-Site Dynamics Primarily control Proteolytic Activity of Bromelain: A Single Molecular Level Study with a Denaturant, a Stabilizer and a Macromolecular Crowder. BBA ADVANCES 2022; 2:100041. [PMID: 37082607 PMCID: PMC10074955 DOI: 10.1016/j.bbadva.2022.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022] Open
Abstract
Proteins are dynamic entity with various molecular motions at different timescale and length scale. Molecular motions are crucial for the optimal function of an enzyme. It seems intuitive that these motions are crucial for optimal enzyme activity. However, it is not easy to directly correlate an enzyme's dynamics and activity due to biosystems' enormous complexity. amongst many factors, structure and dynamics are two prime aspects that combinedly control the activity. Therefore, having a direct correlation between protein dynamics and activity is not straightforward. Herein, we observed and correlated the structural, functional, and dynamical responses of an industrially crucial proteolytic enzyme, bromelain with three versatile classes of chemicals: GnHCl (protein denaturant), sucrose (protein stabilizer), and Ficoll-70 (macromolecular crowder). The only free cysteine (Cys-25 at the active-site) of bromelain has been tagged with a cysteine-specific dye to unveil the structural and dynamical changes through various spectroscopic studies both at bulk and at the single molecular level. Proteolytic activity is carried out using casein as the substrate. GnHCl and sucrose shows remarkable structure-dynamics-activity relationships. Interestingly, with Ficoll-70, structure and activity are not correlated. However, microsecond dynamics and activity are beautifully correlated in this case also. Overall, our result demonstrates that bromelain dynamics in the microsecond timescale around the active-site is probably a key factor in controlling its proteolytic activity.
Collapse
|
5
|
Das N, Khan T, Subba N, Sen P. Correlating Bromelain's activity with its structure and active-site dynamics and the medium's physical properties in a hydrated deep eutectic solvent. Phys Chem Chem Phys 2021; 23:9337-9346. [PMID: 33885064 DOI: 10.1039/d1cp00046b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Deep eutectic solvents (DESs) are emerging as new media of choice for biocatalysis due to their environmentally friendly nature, fine-tunability, and potential biocompatibility. This work deciphers the behaviour of bromelain in a ternary DES composed of acetamide, urea, and sorbitol at mole fractions of 0.5, 0.3, and 0.2, respectively (0.5Ac/0.3Ur/0.2Sor), with various degrees of hydration. Bromelain is an essential industrial proteolytic enzyme, and the chosen DES is non-ionic and liquid at room temperature. This provides us with a unique opportunity to contemplate protein behaviour in a non-ionic DES for the very first time. Our results infer that at a low DES concentration (up to 30% V/V DES), bromelain adopts a more compact structural conformation, whereas at higher DES concentrations, it becomes somewhat elongated. The microsecond conformational fluctuation time around the active site of bromelain gradually increases with increasing DES concentration, especially beyond 30% V/V. Interestingly, bromelain retains most of its enzymatic activity in the DES, and at some concentrations, the activity is even higher compared with its native state. Furthermore, we correlate the activity of bromelain with its structure, its active-site dynamics, and the physical properties of the medium. Our results demonstrate that the compact structural conformation and flexibility of the active site of bromelain favour its proteolytic activity. Similarly, a medium with increased polarity and decreased viscosity is favourable for its activity. The presented physical insights into how enzymatic activity depends on the protein structure and dynamics and the physical properties of the medium might provide useful guidelines for the rational design of DESs as biocatalytic media.
Collapse
Affiliation(s)
- Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208 016, UP, India.
| | | | | | | |
Collapse
|
6
|
Judy E, Kishore N. Quantitative calorimetric evidences into counteraction mechanism of denaturing effect of guanidine hydrochloride by citrulline and betaine. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Tian M, Zhu J, Guo J, Guo X. Activity of Bromelain with Cationic Surfactants and the Correlation with the Change of
1
H NMR
Signals. J SURFACTANTS DETERG 2020. [DOI: 10.1002/jsde.12454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maozhang Tian
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC Beijing 100083 China
| | - Jiaxin Zhu
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225002 China
| | - Jingjing Guo
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225002 China
| | - Xia Guo
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225002 China
| |
Collapse
|
8
|
Sindhu A, Kumar S, Mondal D, Bahadur I, Venkatesu P. Protein packaging in ionic liquid mixtures: an ecofriendly approach towards the improved stability of β-lactoglobulin in cholinium-based mixed ionic liquids. Phys Chem Chem Phys 2020; 22:14811-14821. [DOI: 10.1039/d0cp02151b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present work demonstrates a pioneering approach for the packaging of β-LG with improved stability in the presence of aqueous solutions containing cholinium-based ionic liquid mixtures.
Collapse
Affiliation(s)
| | - Sumit Kumar
- Department of Chemistry
- University of Delhi
- Delhi
- India
| | - Dibyendu Mondal
- Centre for Nano & Material Science
- JAIN (deemed to be University)
- Jain Global Campus
- Bangalore-562112
- India
| | - Indra Bahadur
- Department of Chemistry, School of Physical and Chemical Sciences, Material Science Innovation & Modelling (MaSIM) Focus Area, Faculty of Natural and Agricultural Sciences
- North-West University (Mafikeng Campus)
- Private Bag X2046
- Mmabatho 2735
- South Africa
| | | |
Collapse
|
9
|
Molecular level insight into the counteraction of trehalose on the activity as well as denaturation of lysozyme induced by guanidinium chloride. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.110489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Narang P, Yadav N, Venkatesu P. Scrutinizing the effect of various nitrogen containing additives on the micellization behavior of a triblock copolymer. J Colloid Interface Sci 2019; 553:655-665. [DOI: 10.1016/j.jcis.2019.06.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 11/29/2022]
|
11
|
Does macromolecular crowding compatible with enzyme stem bromelain structure and stability? Int J Biol Macromol 2019; 131:527-535. [DOI: 10.1016/j.ijbiomac.2019.03.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 01/21/2023]
|
12
|
Kumar PK, Bisht M, Venkatesu P, Bahadur I, Ebenso EE. Exploring the Effect of Choline-Based Ionic Liquids on the Stability and Activity of Stem Bromelain. J Phys Chem B 2018; 122:10435-10444. [DOI: 10.1021/acs.jpcb.8b08173] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Meena Bisht
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | | | | | | |
Collapse
|
13
|
The effects of biological buffers TRIS, TAPS, TES on the stability of lysozyme. Int J Biol Macromol 2018; 112:720-727. [DOI: 10.1016/j.ijbiomac.2018.01.203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 12/20/2022]
|
14
|
Rani A, Jha I, Venkatesu P. Undesirable impact on structure and stability of insulin on addition of (+)-catechin hydrate with sugar. Arch Biochem Biophys 2018; 646:64-71. [DOI: 10.1016/j.abb.2018.03.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022]
|
15
|
Ataide JA, Gérios EF, Mazzola PG, Souto EB. Bromelain-loaded nanoparticles: A comprehensive review of the state of the art. Adv Colloid Interface Sci 2018; 254:48-55. [PMID: 29622269 DOI: 10.1016/j.cis.2018.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/14/2018] [Accepted: 03/19/2018] [Indexed: 12/22/2022]
Abstract
Stem bromelain is a common available cysteine protease derived from pineapple (Ananas comosus L.). Bromelain finds widespread applications in several areas, such as medicine, health, food, and cosmetics, and its strong proteolytic activity supports its future application in many additional fields. However, most proteins and/or enzymes are fragile, leading to important considerations about increase storage and operational stability to enable their practical application. In this scenario, the use of nanoparticles to deliver proteins is increasing exponentially, given that these systems are capable of enhance active's stability, solubility and permeability, and decrease toxicity. In the pharmaceutical nanotechnology field, bromelain has played different roles and thus this paper aims to review the available literature for the use of nanoparticles and bromelain.
Collapse
Affiliation(s)
- Janaína Artem Ataide
- Graduate Program in Medical Sciences, School of Medical Sciences, University of Campinas, Brazil; Department of Pharmaceutical Technology of the Faculty of Pharmacy, University of Coimbra, Portugal.
| | | | | | - Eliana B Souto
- Department of Pharmaceutical Technology of the Faculty of Pharmacy, University of Coimbra, Portugal; REQUIMTE - Group of Pharmaceutical Technology, Coimbra, Portugal
| |
Collapse
|
16
|
Crowded milieu tuning the stability and activity of stem bromelain. Int J Biol Macromol 2018; 109:114-123. [DOI: 10.1016/j.ijbiomac.2017.12.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 11/24/2022]
|
17
|
Rani A, Venkatesu P. Changing relations between proteins and osmolytes: a choice of nature. Phys Chem Chem Phys 2018; 20:20315-20333. [DOI: 10.1039/c8cp02949k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The stabilization and destabilization of the protein in the presence of any additive is mainly attributed to its preferential exclusion from protein surface and its preferential binding to the protein surface, respectively.
Collapse
Affiliation(s)
- Anjeeta Rani
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | | |
Collapse
|
18
|
Narang P, Vepuri SB, Venkatesu P, Soliman ME. An unexplored remarkable PNIPAM-osmolyte interaction study: An integrated experimental and simulation approach. J Colloid Interface Sci 2017; 504:417-428. [DOI: 10.1016/j.jcis.2017.05.109] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/25/2017] [Accepted: 05/27/2017] [Indexed: 11/26/2022]
|
19
|
Rani A, Taha M, Venkatesu P, Lee MJ. Coherent Experimental and Simulation Approach To Explore the Underlying Mechanism of Denaturation of Stem Bromelain in Osmolytes. J Phys Chem B 2017; 121:6456-6470. [DOI: 10.1021/acs.jpcb.7b01776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anjeeta Rani
- Department
of Chemistry, University of Delhi, Delhi 110 007, India
| | - Mohamed Taha
- Department
of Chemistry, College of Science, Sultan Qaboos University, PO Box 36, PC 123 Muscat, Oman
| | | | - Ming- Jer Lee
- Department of Chemical Engineering, National Taiwan University of Science & Technology, Taipei 10607, Taiwan
| |
Collapse
|