1
|
Mejlsøe S, Kakkar A. Telodendrimers: Promising Architectural Polymers for Drug Delivery. Molecules 2020; 25:E3995. [PMID: 32887285 PMCID: PMC7504730 DOI: 10.3390/molecules25173995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Architectural complexity has played a key role in enhancing the efficacy of nanocarriers for a variety of applications, including those in the biomedical field. With the continued evolution in designing macromolecules-based nanoparticles for drug delivery, the combination approach of using important features of linear polymers with dendrimers has offered an advantageous and viable platform. Such nanostructures, which are commonly referred to as telodendrimers, are hybrids of linear polymers covalently linked with different dendrimer generations and backbones. There is considerable variety in selection from widely studied linear polymers and dendrimers, which can help tune the overall composition of the resulting hybrid structures. This review highlights the advances in articulating syntheses of these macromolecules, and the contributions these are making in facilitating therapeutic administration. Limited progress has been made in the design and synthesis of these hybrid macromolecules, and it is through an understanding of their physicochemical properties and aqueous self-assembly that one can expect to fully exploit their potential in drug delivery.
Collapse
Affiliation(s)
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada;
| |
Collapse
|
2
|
Sarker DK. Architectures and Mechanical Properties of Drugs and Complexes of Surface-Active Compounds at Air-Water and Oil-Water Interfaces. Curr Drug Discov Technol 2020; 16:11-29. [PMID: 29149812 DOI: 10.2174/1570163814666171117132202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Drugs can represent a multitude of compounds from proteins and peptides, such as growth hormones and insulin and on to simple organic molecules such as flurbiprofen, ibuprofen and lidocaine. Given the chemical nature of these compounds two features are always present. A portion or portions of the molecule that has little affinity for apolar surfaces and media and on the contrary a series of part or one large part that has considerable affinity for hydrophilic, polar or charged media and surfaces. A series of techniques are routinely used to probe the molecular interactions that can arise between components, such as the drug, a range of surface- active excipients and flavor compounds, for example terpenoids and the solvent or dispersion medium. RESULTS Fifty-eight papers were included in the review, a large number (16) being of theoretical nature and an equally large number (14) directly pertaining to medicine and pharmacy; alongside experimental data and phenomenological modelling. The review therefore simultaneously represents an amalgam of review article and research paper with routinely used or established (10) and well-reported methodologies (also included in the citations within the review). Experimental data included from various sources as diverse as foam micro-conductivity, interferometric measurements of surface adsorbates and laser fluorescence spectroscopy (FRAP) are used to indicate the complexity and utility of foams and surface soft matter structures for a range of purposes but specifically, here for encapsulation and incorporation of therapeutics actives (pharmaceutical molecules, vaccines and excipients used in medicaments). Techniques such as interfacial tensiometry, interfacial rheology (viscosity, elasticity and visco-elasticity) and nanoparticle particle size (hydrodynamic diameter) and charge measurements (zeta potential), in addition to atomic force and scanning electron microscopy have proven to be very useful in understanding how such elemental components combine, link or replace one another (competitive displacement). They have also proven to be both beneficial and worthwhile in the sense of quantifying the unseen actions and interplay of adsorbed molecules and the macroscopic effects, such as froth formation, creaming or sedimentation that can occur as a result of these interactions. CONCLUSION The disclosures and evaluations presented in this review confirm the importance of a theoretical understanding of a complex model of the molecular interactions, network and present a framework for the understanding of really very complex physical forms. Future therapeutic developers rely on an understanding of such complexity to garner a route to a more successful administration and formulation of a new generation of therapeutic delivery systems for use in medicine.
Collapse
Affiliation(s)
- Dipak K Sarker
- Interfacial Nanotechnology Group, School of Pharmacy and Biomolecular Sciences, The University of Brighton, Moulsecoomb Campus, Lewes Road, Brighton, BN2 4GJ, United Kingdom
| |
Collapse
|
3
|
Yazdani H, Kaul E, Bazgir A, Maysinger D, Kakkar A. Telodendrimer-Based Macromolecular Drug Design using 1,3-Dipolar Cycloaddition for Applications in Biology. Molecules 2020; 25:E857. [PMID: 32075239 PMCID: PMC7071137 DOI: 10.3390/molecules25040857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
An architectural polymer containing hydrophobic isoxazole-based dendron and hydrophilic polyethylene glycol linear tail is prepared by a combination of the robust ZnCl2 catalyzed alkyne-nitrile oxide 1,3-dipolar cycloaddition and esterification chemistry. This water soluble amphiphilic telodendrimer acts as a macromolecular biologically active agent and shows concentration dependent reduction of glioblastoma (U251) cell survival.
Collapse
Affiliation(s)
- Hossein Yazdani
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada;
- Department of Chemistry, Shahid Beheshti University G.C., Tehran 1983963113, Iran;
| | - Esha Kaul
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada;
| | - Ayoob Bazgir
- Department of Chemistry, Shahid Beheshti University G.C., Tehran 1983963113, Iran;
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada;
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada;
| |
Collapse
|
4
|
Rajagopal N, Irudayanathan FJ, Nangia S. Computational Nanoscopy of Tight Junctions at the Blood-Brain Barrier Interface. Int J Mol Sci 2019; 20:E5583. [PMID: 31717316 PMCID: PMC6888702 DOI: 10.3390/ijms20225583] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
The selectivity of the blood-brain barrier (BBB) is primarily maintained by tight junctions (TJs), which act as gatekeepers of the paracellular space by blocking blood-borne toxins, drugs, and pathogens from entering the brain. The BBB presents a significant challenge in designing neurotherapeutics, so a comprehensive understanding of the TJ architecture can aid in the design of novel therapeutics. Unraveling the intricacies of TJs with conventional experimental techniques alone is challenging, but recently developed computational tools can provide a valuable molecular-level understanding of TJ architecture. We employed the computational methods toolkit to investigate claudin-5, a highly expressed TJ protein at the BBB interface. Our approach started with the prediction of claudin-5 structure, evaluation of stable dimer conformations and nanoscale assemblies, followed by the impact of lipid environments, and posttranslational modifications on these claudin-5 assemblies. These led to the study of TJ pores and barriers and finally understanding of ion and small molecule transport through the TJs. Some of these in silico, molecular-level findings, will need to be corroborated by future experiments. The resulting understanding can be advantageous towards the eventual goal of drug delivery across the BBB. This review provides key insights gleaned from a series of state-of-the-art nanoscale simulations (or computational nanoscopy studies) performed on the TJ architecture.
Collapse
Affiliation(s)
| | | | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
5
|
Bhunia D, Pradhan K, Das G, Ghosh S, Mondal P, Ghosh S. Matrix metalloproteinase targeted peptide vesicles for delivering anticancer drugs. Chem Commun (Camb) 2018; 54:9309-9312. [PMID: 30070277 DOI: 10.1039/c8cc05687k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A matrix metalloproteinase (MMP) targeted tetrapeptide vesicle has been designed and developed, which strongly binds at a MMP9 enzymatic site. Interestingly, it has a propensity to encapsulate and deliver the doxorubicin drug specifically to the cancer cell, induces superior apoptotic death, and inhibits the metastatic cancer cell migration and growth of multicellular 3D spheroids.
Collapse
Affiliation(s)
- Debmalya Bhunia
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| | | | | | | | | | | |
Collapse
|
6
|
Zhong Y, Zeberl BJ, Wang X, Luo J. Combinatorial approaches in post-polymerization modification for rational development of therapeutic delivery systems. Acta Biomater 2018; 73:21-37. [PMID: 29654990 PMCID: PMC5985219 DOI: 10.1016/j.actbio.2018.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/07/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022]
Abstract
The combinatorial polymer library approach has been proven to be effective for the optimization of therapeutic delivery systems. The library of polymers with chemical diversity has been synthesized by (i) polymerization of functionalized monomers or (ii) post-polymerization modification of reactive polymers. Most scientists have followed the first approach so far, and the second method has emerged as a versatile approach for combinatorial biomaterials discovery. This review focuses on the second approach, especially discussing the post-modifications that employ reactive polymers as templates for combinatorial synthesis of a library of functional polymers with distinct structural diversity or a combination of different functionalities. In this way, the functional polymers have a consistent chain length and distribution, which allows for systematic optimization of therapeutic delivery polymers for the efficient delivery of genes, small-molecule drugs, and protein therapeutics. In this review, the modification of representative reactive polymers for the delivery of different therapeutic payloads are summarized. The recent advances in rational design and optimization of therapeutic delivery systems based on reactive polymers are highlighted. This review ends with a summary of the current achievements and the prospect on future directions in applying the approach of post-polymerization modification of polymers to accelerate the development of therapeutic delivery systems. STATEMENT OF SIGNIFICANCE A strategy to rationally design and systematically optimize polymers for the efficient delivery of specific therapeutics is highly needed. The combinatorial polymer library approach could be an effective way to this end. The post-polymerization modification of reactive polymer precursors is applicable for the combinatorial synthesis of a library of functional polymers with distinct structural diversity across a consistent degree of polymerization. This allows for parallel comparison and systematic evaluation/optimization of functional polymers for efficient therapeutic delivery. This review summarizes the key elements of this combinatorial polymer synthesis approach realized by post-polymerization modification of reactive polymer precursors towards the development and identification of optimal polymers for the efficient delivery of therapeutic agents.
Collapse
Affiliation(s)
- Yuanbo Zhong
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Brian J Zeberl
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States.
| |
Collapse
|
7
|
Ma H, Khan A, Nangia S. Dynamics of OmpF Trimer Formation in the Bacterial Outer Membrane of Escherichia coli. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5623-5634. [PMID: 29166022 DOI: 10.1021/acs.langmuir.7b02653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The self-assembly of outer membrane protein F (OmpF) in the outer membrane of Escherichia coli Gram-negative bacteria was studied using multiscale molecular dynamics simulations. To accommodate the long time scale required for protein assembly, coarse-grained parametrization of E. coli outer membrane lipids was first developed. The OmpF monomers formed stable dimers at specific protein-protein interactions sites irrespective of the lipid membrane environment. The dimer intermediate was asymmetric but provided a template to form a symmetric trimer. Superposition analysis of the self-assembled trimer with the X-ray crystal structure of the trimer available in the protein data bank showed excellent agreement with global root-mean-square deviation of less than 2.2 Å. The free energy change associated with dimer formation was -26 ± 1 kcal mol-1, and for a dimer to bind to a monomer and to form a trimer yielded -56 ± 4 kcal mol-1. Based on thermodynamic data, an alternate path to trimer formation via interaction of two dimers is also presented.
Collapse
Affiliation(s)
- Huilin Ma
- Department of Biomedical and Chemical Engineering , Syracuse University , Syracuse , New York 13244 , United States
| | - Aliza Khan
- Department of Biomedical and Chemical Engineering , Syracuse University , Syracuse , New York 13244 , United States
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering , Syracuse University , Syracuse , New York 13244 , United States
| |
Collapse
|
8
|
Hahn L, Lübtow MM, Lorson T, Schmitt F, Appelt-Menzel A, Schobert R, Luxenhofer R. Investigating the Influence of Aromatic Moieties on the Formulation of Hydrophobic Natural Products and Drugs in Poly(2-oxazoline)-Based Amphiphiles. Biomacromolecules 2018; 19:3119-3128. [DOI: 10.1021/acs.biomac.8b00708] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lukas Hahn
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Michael M. Lübtow
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Thomas Lorson
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Frederik Schmitt
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
- Lehrstuhl Tissue Engineering und Regenerative Medizin and Fraunhofer-Institut für Silicatforschung ISC, Universitätklinikum Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Antje Appelt-Menzel
- Lehrstuhl Tissue Engineering und Regenerative Medizin and Fraunhofer-Institut für Silicatforschung ISC, Universitätklinikum Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Rainer Schobert
- Organic Chemistry Laboratory, Universität Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| |
Collapse
|