1
|
Cheng X, Pu Y, Ye S, Xiao X, Zhang X, Chen H. Measuring Solvent Exchange in Silica Nanoparticles with Rotor-Based Fluorophore. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305779. [PMID: 37774750 DOI: 10.1002/adma.202305779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Measuring the diffusivity of molecules is the first step toward understanding their dependence and controlling diffusion, but the challenge increases with the decrease of molecular size, particularly for non-fluorescent and non-reactive molecules such as solvents. Here, the capability to monitor the solvent exchange process within the micropores of silica with millisecond time resolution is demonstrated, by simply embedding a rotor-based fluorophore (thioflavin T) in colloidal silica nanoparticles. Basically, the silica provides an extreme case of viscous microenvironment, which is affected by the polarity of the solvents. The fluorescence intensity traces can be well fitted to the Fickian diffusion model, allowing analytical solution of the diffusion process, and revealing the diffusion coefficients. The validation experiments, involving the water-to-ethanol and ethanol-to-water solvent exchange, the comparison of different drying conditions, and the variation in the degree of cross-linking in silica, confirmed the effectiveness and sensitivity of this method for characterizing diffusion in silica micropores. This work focuses on the method development of measuring diffusivity and the high temporal resolution in tracking solvent exchange dynamics over a short distance (within 165 nm) opens enormous possibilities for further studies.
Collapse
Affiliation(s)
- Xuejun Cheng
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Yingming Pu
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Songtao Ye
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Xiao Xiao
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Xin Zhang
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Hongyu Chen
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| |
Collapse
|
2
|
Ito T. Single-Molecule Fluorescence Investigations of Solute Transport Dynamics in Nanostructured Membrane Separation Materials. J Phys Chem B 2023. [PMID: 37364247 DOI: 10.1021/acs.jpcb.3c02807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Many materials used for membrane separations are composed of nanoscale structures such as pores and domains. Such nanostructures often control the solute permeability and selectivity of the separation membranes. Thus, for future development of highly efficient separation membranes, it is important to understand the structural and chemical properties of these nanostructures and also their influences on solute transport dynamics. For the last two decades, single-molecule fluorescence techniques have been used to measure the detailed dynamics of solute molecules diffusing in various nanostructured materials, giving valuable insights into molecular transport mechanisms influenced by nanoscale material heterogeneity. This Perspective discusses recent single-molecule fluorescence studies on solute diffusion in materials relevant to membrane separations, including dense polymer films and nanoporous materials. These studies have revealed the formation and properties of nanostructures and unique transport dynamics of solute molecules manipulated by their confinement and partitioning to the nanostructures, which play key roles in membrane separations. This Perspective will also point out scientific challenges toward a thorough understanding of molecular-level mechanisms in membrane separations.
Collapse
Affiliation(s)
- Takashi Ito
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506-0401, United States
| |
Collapse
|
3
|
Coceancigh H, Xue L, Nagasaka S, Higgins DA, Ito T. Solvent-Induced Swelling Behaviors of Microphase-Separated Polystyrene- block-Poly(ethylene oxide) Thin Films Investigated Using In Situ Spectroscopic Ellipsometry and Single-Molecule Fluorescence Microscopy. J Phys Chem B 2022; 126:8338-8349. [PMID: 36219821 DOI: 10.1021/acs.jpcb.2c05025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Block copolymers have attracted considerable interest in the fields of nanoscience and nanotechnology because these polymers afford well-defined nanostructures via self-assembly. An in-depth understanding of solvent effects on the physicochemical properties of these microdomains is crucial for their preparation and utilization. Herein, we employed in situ spectroscopic ellipsometry and single-molecule fluorescence techniques to gain detailed insights into microdomain properties in polystyrene-block-poly(ethylene oxide) (PS-b-PEO) films exposed to ethanol- and water-saturated N2. We observed a quick increase and a subsequent gradual decrease in the ellipsometric thickness of PS-b-PEO films upon exposure to ethanol-saturated N2. This observation was unexpected because ethanol-saturated N2 induced negligible thickness change for PS and PEO homopolymer films. The similarity in maximum thickness gain observed under ethanol- and water-saturated N2 implied the swelling of PEO microdomains. Ethanol vapor permeation through the PEO microdomains was supported by the redshift of the ensemble and single-molecule fluorescence emission of Nile red in PS-b-PEO films. Single-molecule tracking data showed the initial enhancement and subsequent reduction of the diffusion of hydrophilic sulforhodamine B molecules in PS-b-PEO films upon exposure to ethanol-saturated N2, consistent with the spectroscopic ellipsometry results. The higher ethanol susceptibility of the PEO microdomains was attributable to their amorphous nature, as shown by FTIR data.
Collapse
Affiliation(s)
- Herman Coceancigh
- Department of Chemistry, Kansas State University, Manhattan, Kansas66506-0401, United States
| | - Lianjie Xue
- Department of Chemistry, Kansas State University, Manhattan, Kansas66506-0401, United States
| | - Shinobu Nagasaka
- Department of Chemistry, Kansas State University, Manhattan, Kansas66506-0401, United States
| | - Daniel A Higgins
- Department of Chemistry, Kansas State University, Manhattan, Kansas66506-0401, United States
| | - Takashi Ito
- Department of Chemistry, Kansas State University, Manhattan, Kansas66506-0401, United States
| |
Collapse
|
4
|
Investigation of Molecular Diffusion at Block Copolymer Thin Films Using Maximum Entropy Method-Based Fluorescence Correlation Spectroscopy and Single Molecule Tracking. J Fluoresc 2022; 32:1779-1787. [PMID: 35689743 DOI: 10.1007/s10895-022-02975-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) has been widely used to investigate molecular diffusion behavior in various samples. The use of the maximum entropy method (MEM) for FCS data analysis provides a unique means to determine multiple distinct diffusion coefficients without a priori assumption of their number. Comparison of the MEM-based FCS method (MEM-FCS) with another method will reveal its utility and advantage as an analytical tool to investigate diffusion dynamics. Herein, we measured diffusion of fluorescent probes doped into nanostructured thin films using MEM-FCS, and validated the results with single molecule tracking (SMT) data. The efficacy of the MEM code employed was first demonstrated by analyzing simulated FCS data for systems incorporating one and two diffusion modes with broadly distributed diffusion coefficients. The MEM analysis accurately afforded the number of distinct diffusion modes and their mean diffusion coefficients. These results contrasted with those obtained by fitting the simulated data to conventional two-component and anomalous diffusion models, which yielded inaccurate estimates of the diffusion coefficients. Subsequently, the MEM analysis was applied to FCS data acquired from hydrophilic dye molecules incorporated into microphase-separated polystyrene-block-poly(ethylene oxide) (PS-b-PEO) thin films characterized under a water-saturated N2 atmosphere. The MEM analysis revealed distinct fast and slow diffusion components attributable to molecules diffusing on the film surface and inside the film, respectively. SMT studies of the same materials yielded trajectories for mobile molecules that appear to follow the curved PEO microdomains. Diffusion coefficients obtained from the SMT data were consistent with those obtained for the slow diffusion component detected by MEM-FCS. These results highlight the utility of MEM-FCS and SMT for gaining complementary information on molecular diffusion processes in heterogeneous material systems.
Collapse
|
5
|
Ito T, Higgins DA. Fluorescence Microscopic Investigations of Molecular Dynamics in Self-Assembled Nanostructures. CHEM REC 2021; 21:1417-1429. [PMID: 33533548 DOI: 10.1002/tcr.202000173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/17/2021] [Accepted: 01/18/2020] [Indexed: 11/05/2022]
Abstract
Many analytical methods employ self-assembled nanostructured materials as chemical recognition media. Molecular permeation through these materials exhibits unique selectivity owing to nanoconfinement-induced enhancement of permeant-nanostructure interactions. This Personal Account introduces our efforts to investigate the detailed dynamics of single or a small number of molecules in nanostructured materials. We developed new experimental and analysis approaches built upon laser-based fluorescence microscopy to measure the detailed translational and orientational dynamics of molecules diffusing in horizontally-oriented, cylindrical nanostructures, including surfactant micelles, silica mesopores, block copolymer microdomains, and bolaamphiphile-based organic nanotubes. Our studies clarified nanoscale details on the structural/chemical heterogeneity of the nanostructures, and their impacts on molecular mass transport dynamics.
Collapse
Affiliation(s)
- Takashi Ito
- Department of Chemistry, Kansas State University, 213 CBC Building, Manhattan, KS 66506-0401, USA
| | - Daniel A Higgins
- Department of Chemistry, Kansas State University, 213 CBC Building, Manhattan, KS 66506-0401, USA
| |
Collapse
|
6
|
Wang D, Wu H, Liu L, Chen J, Schwartz DK. Diffusive Escape of a Nanoparticle from a Porous Cavity. PHYSICAL REVIEW LETTERS 2019; 123:118002. [PMID: 31573262 DOI: 10.1103/physrevlett.123.118002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/26/2019] [Indexed: 06/10/2023]
Abstract
Narrow escape from confinement through a nanochannel is the critical step of complex transport processes including size-exclusion-based separations, oil and gas extraction from the microporous subsurface environment, and ribonucleic acid translocation through nuclear pore complex channels. While narrow escape has been studied using theoretical and computational methods, experimental quantification is rare because of the difficulty in confining a particle into a microscopic space through a nanoscale hole. Here, we studied narrow escape in the context of continuous nanoparticle diffusion within the liquid-filled void space of an ordered porous material. Specifically, we quantified the spatial dependence of nanoparticle motion and the sojourn times of individual particles in the interconnected confined cavities of a liquid-filled inverse opal film. We found that nanoparticle motion was inhibited near cavity walls and cavity escape was slower than predicted by existing theories and random-walk simulations. A combined computational-experimental analysis indicated that translocation through a nanochannel is barrier controlled rather than diffusion controlled.
Collapse
Affiliation(s)
- Dapeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Peoples Republic of China
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Haichao Wu
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Lijun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Peoples Republic of China
| | - Jizhong Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Peoples Republic of China
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
7
|
Coceancigh H, Higgins DA, Ito T. Optical Microscopic Techniques for Synthetic Polymer Characterization. Anal Chem 2018; 91:405-424. [PMID: 30350610 DOI: 10.1021/acs.analchem.8b04694] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Herman Coceancigh
- Department of Chemistry , Kansas State University , 213 CBC Building , Manhattan , Kansas 66506-0401 , United States
| | - Daniel A Higgins
- Department of Chemistry , Kansas State University , 213 CBC Building , Manhattan , Kansas 66506-0401 , United States
| | - Takashi Ito
- Department of Chemistry , Kansas State University , 213 CBC Building , Manhattan , Kansas 66506-0401 , United States
| |
Collapse
|