1
|
Zhang P, Zhu Y, Li Z, Wang L, Yue C, Lei M, Pu M. Theoretical Study on Photothermal Properties of Azobenzene Sulfonate/Magnesium-Aluminum Hydroxide Composite Dye. ACS OMEGA 2023; 8:11596-11606. [PMID: 37008099 PMCID: PMC10061523 DOI: 10.1021/acsomega.3c00791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
The assembly of various azo dyes and pigments with inorganic layered materials could develop new types of intercalation materials. The electronic structures and photothermal properties of composite materials (AbS--LDH) constituted by azobenzene sulfonate anions (AbS-) and Mg-Al layered double hydroxide (LDH) lamella were theoretically studied at the M06-2X/def2-TZVP//M06-2X/6-31G(d,p) level using density functional theory and time-dependent density functional theory. Meanwhile, the influences of LDH lamella on the AbS- in AbS--LDH materials were investigated. The calculated results showed that the addition of LDH lamella could lower the isomerization energy barrier of CAbS- anions (CAbS- stands for cis AbS-). The thermal isomerization mechanisms of AbS--LDH and AbS were related to the conformational change of the azo group, out-of-plane rotation and in-plane inversion. The LDH lamella could reduce the energy gap of the n → π* and π → π* electronic transition and lead to a red-shift in the absorption spectra. When a polar solvent DMSO was applied, the excitation energy of the AbS--LDHs was increased, making its photostability stronger than in nonpolar solvent and solvent-free.
Collapse
|
2
|
Kido K, Kaneko M. Conformation, hydration, and ligand exchange process of ruthenium nitrosyl complexes in aqueous solution: Free-energy calculations by a combination of molecular-orbital theories and different solvent models. J Comput Chem 2023; 44:546-558. [PMID: 36205560 DOI: 10.1002/jcc.27021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 01/07/2023]
Abstract
Distribution of solvent molecules near transition-metal complex is key information to comprehend the functionality, reactivity, and so forth. However, polarizable continuum solvent models still are the standard and conventional partner of molecular-orbital (MO) calculations in the solution system including transition-metal complex. In this study, we investigate the conformation, hydration, and ligand substitution reaction between NO2 - and H2 O in aqueous solution for [Ru(NO)(OH)(NO2 )4 ]2- (A), [Ru(NO)(OH)(NO2 )3 (ONO)]2- (B), and [Ru(NO)(OH)(NO2 )3 (H2 O)]- (C) using a combination method of MO theories and a state-of-the-art molecular solvation technique (NI-MC-MOZ-SCF). A dominant species is found in the complex B conformers and, as expected, different between the solvent models, which reveals that molecular solvation beyond continuum media treatment are required for a reliable description of solvation near transition-metal complex. In the stability constant evaluation of ligand substitution reaction, an assumption that considers the direct association between the dissociated NO2 - and complex C is useful to obtain a reliable stability constant.
Collapse
Affiliation(s)
- Kentaro Kido
- Nuclear Safety Research Center, Japan Atomic Energy Agency, Tokai-mura Naka-gun, Japan
| | - Masashi Kaneko
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai-mura Naka-gun, Japan
| |
Collapse
|
3
|
Zhang P, Li Z, Liu Y, Shi F, Wang L, Pu M, Lei M. Hydride Relay Exchange Mechanism for the Heterocyclic C-H Arylation of Benzofuran and Benzothiophene Catalyzed by Pd Complexes. J Org Chem 2022; 87:12997-13010. [PMID: 36166363 DOI: 10.1021/acs.joc.2c01545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism and regioselectivity of the heterocyclic C-H arylation of benzofuran and benzothiophene catalyzed by Pd(OAc)2 complexes were investigated using the density functional theory (DFT) method. The Pd(0)L2(PhI) complex (L = HOAc) is proposed to be the catalytic species. Compared to the traditional Heck-type mechanism, concerted metalation-deprotonation (CMD) mechanism, and electrophilic aromatic substitution (SEAr) mechanism for the C-H arylation, a new hydride relay exchange mechanism was proposed for the benzoheterocyclic C-H arylation catalyzed by Pd complexes, which consists of two redox processes between Pd(II) and Pd(0) species to complete the regioselective C-H activation. The calculated results indicate that the reaction along the hydride relay exchange mechanism is more favorable than those along other mechanisms, including the traditional Heck-type mechanism and the base-assisted anti-H elimination mechanism. This agrees well with the experimental results. Meanwhile, the origin for the regioselective C-H arylation was unveiled in which the α-C-H arylation products are major for the heterocyclic C-H arylation of benzofuran, but the β-C-H arylation products are major for that of benzothiophene. This study might provide a deep mechanistic understanding on the regioselective C-H activation and arylation of benzoheterocycle compounds catalyzed by transition-metal complexes.
Collapse
Affiliation(s)
- Peihuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhewei Li
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yangqiu Liu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Fuxing Shi
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Luocong Wang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
4
|
Understanding of [RuL(ONO)] n+ acting as nitric oxide precursor, a theoretical study of ruthenium complexes of 1,4,8,11-tetraazacyclo- tetradecane having different substituents: How spin multiplicity influences bond angle and bond lengths (Ru-O-NO) in releasing of NO. J Inorg Biochem 2021; 218:111406. [PMID: 33773324 DOI: 10.1016/j.jinorgbio.2021.111406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/25/2022]
Abstract
Generation of nitric oxide has been a great interest in cell biology as it involves a wide range of physiological functions including the blood pressure control; thus the exploitation of ruthenium chemistry has been motivated in biochemical and clinical points of view. Herein, the structural and electronic properties of ruthenium(II) complexes of 1,4,8,11-tetraazacyclotetradecane containing pyridyl, imidazole and benzimidazole (L1, L2, L3) were analyzed theoretically in the context of how spin multiplicity plays a crucial role influencing the NO release from the LRu-ONO moiety. The results show that β-cleavage of nitrito in the complex motivates the release of NO as it depends highly on total spin multiplicity of metal ion altering significantly the geometrical parameters; particularly, a decrease of bond length of Ru-ONO is highly associated with an increase of RuO-NO bond distance that correlates with the decrease of the Ru-O-NO bond angle ultimately leading to the release of NO; apparently, the bending nature of Ru-O-NO defines its release from the complex. This is consistent with orbital energy (dx2-y2) where the stabilization of axial Ru-O bond in the complex was observed, and proved by molecular orbital studies. In the excitation of the complex (singlet to triplet or singlet to quintet), the NO release has been facilitated, agreeing with the Gibbs free energy data where a lower energy for NO release was obtained compared to other types of excitations. In the calculated electronic spectra, a visible broad band with relatively high intensity for [RuL1ONO]+ was observed, agreeing approximately with reported experimental results.
Collapse
|
5
|
Pereira ES, Rodrigues GLS, Rocha WR. Electronic structure and mechanism for the uptake of nitric oxide by the Ru(iii) antitumor complex NAMI-A. RSC Adv 2021; 11:7381-7390. [PMID: 35423255 PMCID: PMC8695036 DOI: 10.1039/d0ra10622d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/05/2021] [Indexed: 11/24/2022] Open
Abstract
Nitric oxide (NO) has well known vasodilation effects in living organisms and its participation in the metastasis of cancer cells through the angiogenesis process has been demonstrated experimentally. Therefore, the uptake of NO has become one focus of investigation to produce anti-metastatic drugs. In this article we have investigated the uptake of NO by the ruthenium based metallodrug trans-tetrachloride(dimethylsulfoxide)imidazole ruthenate(iii) [Im]trans-[RuCl4(Im)(DMSO)], known as New Anti-tumor Metastasis Inhibitor-A (NAMI-A). Electronic structure calculations using Density Functional Theory, DFT, and State-Averaged Complete Active Space Self Consistent Field, SA-CASSCF, with second order perturbation theory corrections, NEVPT2 were carried out to investigate the mechanism involved in the uptake of NO by the Ru-based anticancer metallodrug NAMI-A. The calculations revealed that the reaction takes place at the triplet potential energy surface, with the singlet surface being ∼15 kcal mol-1 shifted to higher energies, and there is a surface crossing to form the most stable singlet product after the reaction takes place at the triplet surface. The spin pairing and electron transfer from the nitric oxide to the metallic fragment takes place at the region of the minimum energy crossing point between the two surfaces. The Ru-NO bond in the {Ru-NO}6 product has ∼10% of the RuIII-NO0 character. The SA-CASSCF/NEVPT2 calculations revealed that the uptake of NO by NAMI-A has a small energy barrier of ∼8 kcal mol-1 and, therefore a rate constant of 11.3 × 106 s-1 at 300 K. In addition, the reaction is thermodynamically favorable, with a Gibbs free energy of ∼30 kcal mol-1. These results show that the uptake of nitric oxide by the NAMI-A complex is kinetically and thermodynamically feasible in biological medium and, therefore, gives support to the anti-angiogenesis theory associated to the mode of action of NAMI-A and other related compounds.
Collapse
Affiliation(s)
- Eufrásia S Pereira
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMolab, Departamento de Química, ICEx, Universidade Federal de Minas Gerais 31270-901 Pampulha Belo Horizonte MG Brazil
| | - Gabriel L S Rodrigues
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMolab, Departamento de Química, ICEx, Universidade Federal de Minas Gerais 31270-901 Pampulha Belo Horizonte MG Brazil
| | - Willian R Rocha
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMolab, Departamento de Química, ICEx, Universidade Federal de Minas Gerais 31270-901 Pampulha Belo Horizonte MG Brazil
| |
Collapse
|
6
|
Marchenko N, Lacroix PG, Bukhanko V, Tassé M, Duhayon C, Boggio-Pasqua M, Malfant I. Multistep Photochemical Reactions of Polypyridine-Based Ruthenium Nitrosyl Complexes in Dimethylsulfoxide. Molecules 2020; 25:molecules25092205. [PMID: 32397237 PMCID: PMC7248738 DOI: 10.3390/molecules25092205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/12/2022] Open
Abstract
The photorelease of nitric oxide (NO·) has been investigated in dimethylsulfoxide (DMSO) on two compounds of formula [Ru(R-tpy)(bpy)(NO)](PF6)3, in which bpy stands for 2,2′-bipyridine and R-tpy for the 4′-R-2,2′:6′,2″-terpyridine with R = H and MeOPh. It is observed that both complexes are extremely sensitive to traces of water, leading to an equilibrium between [Ru(NO)] and [Ru(NO2)]. The photoproducts of formula [Ru(R-tpy)(bpy)(DMSO)](PF6)2 are further subjected to a photoreaction leading to a reversible linkage isomerization between the stable Ru-DMSO(S) (sulfur linked) and the metastable Ru-DMSO(O) (oxygen linked) species. A set of 4 [Ru(R-tpy)(bpy)(DMSO)]2+ complexes (R = H, MeOPh, BrPh, NO2Ph) is investigated to characterize the ratio and mechanism of the isomerization which is tentatively related to the difference in absorbance between the Ru-DMSO(S) and Ru-DMSO(O) forms. In addition, the X-ray crystal structures of [Ru(tpy)(bpy)(NO)](PF6)3 and [Ru(MeOPh-tpy)(bpy)(DMSO(S))](PF6)2 are presented.
Collapse
Affiliation(s)
- Nataliia Marchenko
- LCC (Laboratoire de Chimie de Coordination), CNRS, 205, route de Narbonne, F-31077 Toulouse, France; (N.M.); (V.B.); (M.T.); (C.D.)
| | - Pascal G. Lacroix
- LCC (Laboratoire de Chimie de Coordination), CNRS, 205, route de Narbonne, F-31077 Toulouse, France; (N.M.); (V.B.); (M.T.); (C.D.)
- Correspondence: (L.P.G.); (M.B.-P.); (I.M.); Tel.: +33-561333188 (L.P.G.)
| | - Valerii Bukhanko
- LCC (Laboratoire de Chimie de Coordination), CNRS, 205, route de Narbonne, F-31077 Toulouse, France; (N.M.); (V.B.); (M.T.); (C.D.)
| | - Marine Tassé
- LCC (Laboratoire de Chimie de Coordination), CNRS, 205, route de Narbonne, F-31077 Toulouse, France; (N.M.); (V.B.); (M.T.); (C.D.)
| | - Carine Duhayon
- LCC (Laboratoire de Chimie de Coordination), CNRS, 205, route de Narbonne, F-31077 Toulouse, France; (N.M.); (V.B.); (M.T.); (C.D.)
| | - Martial Boggio-Pasqua
- Laboratoire de Chimie et Physique Quantiques, Université Paul Sabatier (Toulouse), UMR 5626, 218 route de Narbonne, F-31077 Toulouse, France
- Correspondence: (L.P.G.); (M.B.-P.); (I.M.); Tel.: +33-561333188 (L.P.G.)
| | - Isabelle Malfant
- LCC (Laboratoire de Chimie de Coordination), CNRS, 205, route de Narbonne, F-31077 Toulouse, France; (N.M.); (V.B.); (M.T.); (C.D.)
- Correspondence: (L.P.G.); (M.B.-P.); (I.M.); Tel.: +33-561333188 (L.P.G.)
| |
Collapse
|
7
|
Orenha RP, Morgon NH, Contreras-García J, Silva GCG, Nagurniak GR, Piotrowski MJ, Caramori GF, Muñoz-Castro A, Parreira RLT. How does the acidic milieu interfere in the capability of ruthenium nitrosyl complexes to release nitric oxide? NEW J CHEM 2020. [DOI: 10.1039/c9nj04643g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The nitric oxide has a well-defined role in biology. The ruthenium complexes are model for study NO release mechanisms. The proton increases the capability of these compounds to release NO after reduction reaction or of the light supported reaction.
Collapse
Affiliation(s)
- Renato Pereira Orenha
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas
- Universidade de Franca
- Franca
- Brazil
| | | | | | | | | | | | - Giovanni Finoto Caramori
- Departamento de Química
- Universidade Federal de Santa Catarina
- Campus Universitário Trindade
- CP 476
- Florianópolis
| | - Alvaro Muñoz-Castro
- Laboratorio de Química Inorgánica y Materiales Moleculares
- Facultad de Ingenieria
- Universidad Autonoma de Chile
- San Miguel
- Chile
| | | |
Collapse
|
8
|
Li H, Wang D, Zhao X, Lu LN, Liu C, Gong LD, Zhao DX, Yang ZZ. Reaction mechanism of NO with hydrolysates of NAMI-A: an MD simulation by combining the QM/MM(ABEEM) with the MD-FEP method. J Comput Chem 2019; 40:1141-1150. [PMID: 30375671 DOI: 10.1002/jcc.25734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 11/06/2022]
Abstract
Nitrosylation reaction mechanisms of the hydrolysates of NAMI-A and hydrolysis reactions of ruthenium nitrosyl complexes were investigated in the triplet state and the singlet state. Activation free energies were calculated by combining the QM/MM(ABEEM) method with free energy perturbation theory, and the explicit solvent environment was simulated by an ABEEMσπ polarizable force field. Our results demonstrate that nitrosylation reactions of the hydrolysates of NAMI-A occur in both the triplet and the singlet states. The Ru-N-O angle of the triplet ruthenium nitrosyl complexes is in the range of 132.0°-138.2°. However, all the ruthenium nitrosyl complexes at the singlet state show an almost linear Ru-N-O angle. The nitrosylation reaction happens prior to the hydrolysis reaction for the first-step hydrolysates. The activation free energies of the nitrosylation reactions show that the H2 O-NO exchange reaction of [RuCl4 (Im)(H2 O)] in the singlet spin sate is the most likely one. Comparing with the activation free energies of the hydrolysis reactions of the ruthenium nitrosyl complexes, the results indicate that the rate of the DMSO-H2 O exchange reaction of [RuCl3 (NO)(Im)(DMSO)] is faster than that of [RuCl3 (H2 O)(Im)(DMSO)] in both the triplet spin state and the singlet spin state. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hui Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China.,Department of Chemistry, Bohai University, Jinzhou 121013, China
| | - Di Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Xin Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Li-Nan Lu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Cui Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Li-Dong Gong
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Dong-Xia Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| |
Collapse
|
9
|
Roose M, Tassé M, Lacroix PG, Malfant I. Nitric oxide (NO) photo-release in a series of ruthenium–nitrosyl complexes: new experimental insights in the search for a comprehensive mechanism. NEW J CHEM 2019. [DOI: 10.1039/c8nj03907k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism of nitric oxide release is investigated along a series of 1–3 “push–pull” ruthenium nitrosyl complexes.
Collapse
Affiliation(s)
- Max Roose
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- 205 route de Narbonne
- 31077 Toulouse
- France
| | - Marine Tassé
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- 205 route de Narbonne
- 31077 Toulouse
- France
| | - Pascal G. Lacroix
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- 205 route de Narbonne
- 31077 Toulouse
- France
| | - Isabelle Malfant
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- 205 route de Narbonne
- 31077 Toulouse
- France
| |
Collapse
|
10
|
Bukhanko V, Lacroix PG, Sasaki I, Tassé M, Mallet-Ladeira S, Voitenko Z, Malfant I. Mechanism and oxidation state involved in the nitric oxide (NO) photorelease in a terpyridine-bipyridine-based ruthenium nitrosyl complex. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.05.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Nitric oxide photo-release from a ruthenium nitrosyl complex with a 4,4′-bisfluorenyl-2,2′-bipyridine ligand. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.05.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Venâncio MF, Doctorovich F, Rocha WR. Solvation and Proton-Coupled Electron Transfer Reduction Potential of 2NO• to 1HNO in Aqueous Solution: A Theoretical Investigation. J Phys Chem B 2017. [DOI: 10.1021/acs.jpcb.7b03552] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mateus F. Venâncio
- Laboratório
de Química Computacional e Modelagem Molecular (LQC-MM), Departamento
de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901, Pampulha, Belo Horizonte, MG, Brazil
| | - Fabio Doctorovich
- Departamento
de Química Inorganica, Analítica y Química Física,
Facultad de Ciencias Exactas y Naturales (INQUIMAE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Willian R. Rocha
- Laboratório
de Química Computacional e Modelagem Molecular (LQC-MM), Departamento
de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901, Pampulha, Belo Horizonte, MG, Brazil
| |
Collapse
|