1
|
Abstract
In this contribution, we provide a comprehensive overview of acyclic twisted amides, covering the literature since 1993 (the year of the first recognized report on acyclic twisted amides) through June 2020. The review focuses on classes of acyclic twisted amides and their key structural properties, such as amide bond twist and nitrogen pyramidalization, which are primarily responsible for disrupting nN to π*C═O conjugation. Through discussing acyclic twisted amides in comparison with the classic bridged lactams and conformationally restricted cyclic fused amides, the reader is provided with an overview of amidic distortion that results in novel conformational features of acyclic amides that can be exploited in various fields of chemistry ranging from organic synthesis and polymers to biochemistry and structural chemistry and the current position of acyclic twisted amides in modern chemistry.
Collapse
Affiliation(s)
- Guangrong Meng
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jin Zhang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
2
|
Mantsyzov AB, Sokolov MN, Ivantcova PM, Bräse S, Polshakov VI, Kudryavtsev KV. Interplay of Pyrrolidine Units with Homo/Hetero Chirality and CF 3-Aryl Substituents on Secondary Structures of β-Proline Tripeptides in Solution. J Org Chem 2020; 85:8865-8871. [PMID: 32526142 DOI: 10.1021/acs.joc.0c00598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All possible variants of β-proline functionalized tripeptides consisting of homo/hetero chiral monomeric all-cis 5-arylpyrrolidine-2,4-dicarboxylate units were synthesized for the first time by a nonpeptidic coupling method based on 1,3-dipolar cycloaddition chemistry of azomethine ylides. Secondary structures of β-proline tripeptides in solution were determined using the NMR spectroscopy data. o-(Trifluoromethyl)phenyl substituent contributes to stereoselectivity of 1,3-dipolar cycloaddition and structural features of β-proline tripeptides. A β-proline CF3-tripeptide with alternating absolute chirality between adjacent pyrrolidine units mimics natural PPII helix secondary structure.
Collapse
Affiliation(s)
- Alexey B Mantsyzov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Lomonosovsky Ave 31/5, Moscow, 119992, Russian Federation
| | - Mikhail N Sokolov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russian Federation
| | - Polina M Ivantcova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russian Federation
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany.,Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany
| | - Vladimir I Polshakov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Lomonosovsky Ave 31/5, Moscow, 119992, Russian Federation
| | - Konstantin V Kudryavtsev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russian Federation.,Pirogov Russian National Research Medical University, Ostrovityanova Street 1, 117997, Moscow, Russian Federation
| |
Collapse
|
3
|
Otani Y, Park S, Ohwada T. Conformational preference of bicyclic β-amino acid dipeptides. Chirality 2020; 32:790-807. [PMID: 32239582 DOI: 10.1002/chir.23220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 11/06/2022]
Abstract
Bridged bicyclic amino acids have high potential applicability as self-organized, conformationally constrained synthetic building blocks that do not require assistance from hydrogen bond formation. We systematically investigated the intrinsic conformational propensities of dipeptides of bridged bicyclic β-amino acids by means of accelerated molecular dynamics simulation and density functional theory (DFT) calculations in methanol, chloroform, and water. While the main-chain conformation, represented by φ and θ values, is fixed by the nature of the bicyclic ring structure, rotation of the C-terminal carbonyl group (ψ) is also restricted, converging to one or two minima. In endo-type dipeptides, in which the two N- and C-terminal amides are spatially close to each other, the C-terminal amide plane is placed horizontally. In exo-type dipeptides, in which the two amides are on opposite sides of the ring plane, the C-terminal carbonyl group can take two types of positions: either parallel/antiparallel with the N-terminal carbonyl or beneath the bicyclic ring, forcing the amide NHMe moiety to lie outside of the ring. We also examined the cis-trans preference of model bicyclic amides. Although the parent amides exhibit cis-trans equilibrium without any preference, addition of a methyl group on one of the bridgehead positions tips the equilibrium towards trans.
Collapse
Affiliation(s)
- Yuko Otani
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Seokhwi Park
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiko Ohwada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Su A, Wang S, Sada A, Otani Y, Zhai L, Liu X, Sayama M, Ohki R, Ohwada T. Non-naturally Occurring Helical Molecules Can Interfere with p53-MDM2 and p53-MDMX Protein-Protein Interactions. Chem Pharm Bull (Tokyo) 2019; 67:1139-1143. [PMID: 31582633 DOI: 10.1248/cpb.c19-00501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have discovered that β-amino acid homooligomers with cis- or trans-amide conformation can fold themselves into highly ordered helices. Moreover, unlike α-amino acid peptides, which are significantly stabilized by intramolecular hydrogen bonding, these helical structures are autogenous conformations that are stable without the aid of hydrogen bonding and irrespective of solvent (protic/aprotic/halogenated) or temperature. A structural overlap comparison of helical cis/trans bicyclic β-proline homooligomers with typical α-helix structure of α-amino acid peptides reveals clear differences of pitch and diameter per turn. Bridgehead substituents of the present homooligomers point outwards from the helical surface. We were interested to know whether such non-naturally occurring divergent helical molecules could mimic α-helix structures. In this study, we show that bicyclic β-proline oligomer derivatives inhibit p53-MDM2 and p53-MDMX protein-protein interactions, exhibiting MDM2-antagonistic and MDMX-antagonistic activities.
Collapse
Affiliation(s)
- Aoze Su
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Siyuan Wang
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Akane Sada
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute
| | - Yuko Otani
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Luhan Zhai
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Xin Liu
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Misa Sayama
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute
| | - Tomohiko Ohwada
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| |
Collapse
|
5
|
Amide nitrogen pyramidalization changes lactam amide spinning. Nat Commun 2019; 10:461. [PMID: 30692534 PMCID: PMC6349922 DOI: 10.1038/s41467-018-08249-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/19/2018] [Indexed: 11/29/2022] Open
Abstract
Although cis-trans lactam amide rotation is fundamentally important, it has been little studied, except for a report on peptide-based lactams. Here, we find a consistent relationship between the lactam amide cis/trans ratios and the rotation rates between the trans and cis lactam amides upon the lactam chain length of the stapling side-chain of two 7-azabicyclo[2.2.1]heptane bicyclic units, linked through a non-planar amide bond. That is, as the chain length increased, the rotational rate of trans to cis lactam amide was decreased, and consequently the trans ratio was increased. This chain length-dependency of the lactam amide isomerization and our simulation studies support the idea that the present lactam amides can spin through 360 degrees as in open-chain amides, due to the occurrence of nitrogen pyramidalization. The tilting direction of the pyramidal amide nitrogen atom of the bicyclic systems is synchronized with the direction of the semicircle-rotation of the amide. Cis-trans lactam amide rotation is a fundamental process and its understanding might aid molecular design. Here, the authors report the synthesis and study of bicyclic lactams which undergo spin through 360 degrees as in open-chain amides, due to the occurrence of nitrogen pyramidalization.
Collapse
|
6
|
Unexpected Resistance to Base-Catalyzed Hydrolysis of Nitrogen Pyramidal Amides Based on the 7-Azabicyclic[2.2.1]heptane Scaffold. MOLECULES (BASEL, SWITZERLAND) 2018; 23:molecules23092363. [PMID: 30223585 PMCID: PMC6225387 DOI: 10.3390/molecules23092363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 11/27/2022]
Abstract
Non-planar amides are usually transitional structures, that are involved in amide bond rotation and inversion of the nitrogen atom, but some ground-minimum non-planar amides have been reported. Non-planar amides are generally sensitive to water or other nucleophiles, so that the amide bond is readily cleaved. In this article, we examine the reactivity profile of the base-catalyzed hydrolysis of 7-azabicyclo[2.2.1]heptane amides, which show pyramidalization of the amide nitrogen atom, and we compare the kinetics of the base-catalyzed hydrolysis of the benzamides of 7-azabicyclo[2.2.1]heptane and related monocyclic compounds. Unexpectedly, non-planar amides based on the 7-azabicyclo[2.2.1]heptane scaffold were found to be resistant to base-catalyzed hydrolysis. The calculated Gibbs free energies were consistent with this experimental finding. The contribution of thermal corrections (entropy term, –TΔS‡) was large; the entropy term (ΔS‡) took a large negative value, indicating significant order in the transition structure, which includes solvating water molecules.
Collapse
|
7
|
Mantsyzov AB, Savelyev OY, Ivantcova PM, Bräse S, Kudryavtsev KV, Polshakov VI. Theoretical and NMR Conformational Studies of β-Proline Oligopeptides With Alternating Chirality of Pyrrolidine Units. Front Chem 2018; 6:91. [PMID: 29644215 PMCID: PMC5883087 DOI: 10.3389/fchem.2018.00091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 03/14/2018] [Indexed: 11/13/2022] Open
Abstract
Synthetic β-peptides are potential functional mimetics of native α-proteins. A recently developed, novel, synthetic approach provides an effective route to the broad group of β-proline oligomers with alternating patterns of stereogenic centers. Conformation of the pyrrolidine ring, Z/E isomerism of β-peptide bonds, and hindered rotation of the neighboring monomers determine the spatial structure of this group of β-proline oligopeptides. Preferences in their structural organization and corresponding thermodynamic properties are determined by NMR spectroscopy, restrained molecular dynamics and quantum mechanics. The studied β-proline oligopeptides exist in dimethyl sulfoxide solution in a limited number of conformers, with compatible energy of formation and different spatial organization. In the β-proline tetrapeptide with alternating chirality of composing pyrrolidine units, one of three peptide bonds may exist in an E configuration. For the alternating β-proline pentapeptide, the presence of an E configuration for at least of one β-peptide bond is mandatory. In this case, three peptide bonds synchronously change their configurations. Larger polypeptides may only exist in the presence of several E configurations of β-peptide bonds forming a wave-like extended structure.
Collapse
Affiliation(s)
- Alexey B. Mantsyzov
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Oleg Y. Savelyev
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Polina M. Ivantcova
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Konstantin V. Kudryavtsev
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Russia
| | - Vladimir I. Polshakov
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|