1
|
Gündoğdu G, Yılmaz Topuzlu E, Mutlu F, Ertekin UE, Okur HI. Oil-in-Water Emulsions Probed Using Fluorescence Multivariate-Curve-Resolution Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13116-13121. [PMID: 38861700 PMCID: PMC11494642 DOI: 10.1021/acs.langmuir.4c01018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024]
Abstract
Hydrophobic surfaces in contact with aqueous media are omnipresent in nature. A plethora of key biological and physiological processes occur at the interface of immiscible fluids. Besides its fundamental importance, probing such interfaces is rather challenging, especially when one medium is bathed in the other. Herein, we demonstrate a fluorescence-based method that probes the oil-water interface and interfacial processes through surface dielectric perturbations. The fluorescence response of Nile Red is measured in hexadecane in water nanoemulsions. Three major spectral components appear: two from the bulk liquid media (hexadecane and water) and a distinct band at around 640 nm due to the interfacial component. Such spectra are deconvoluted using the multivariate-curve-resolution algorithm, and interface-correlated fluorescence spectra are attained. The influence of anionic sodium dodecylbenzenesulfonate (SDBS) and cationic cetyltrimethylammonium bromide (CTAB) surfactants on the oil-water interface is elucidated with concentration-dependent measurements. A charge-dependent spectral shift is observed. The interface correlated band at 641 nm for bare hexadecane nanoemulsions red shifts in the presence of anionic surfactants, indicating an apparent dielectric increase. In contrast, the same band gradually blue shifts with increasing cationic surfactant concentration, indicating an apparent interface dielectric decrease. Such a method can be utilized to probe alterations at interfaces beyond the oil/water interface.
Collapse
Affiliation(s)
- Gülsüm Gündoğdu
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
- National
Nanotechnology Research Center (UNAM), Bilkent
University, 06800 Ankara, Turkey
- Department
of Energy Science and Technology, Faculty of Science, Turkish-German University, Istanbul 34820, Turkey
| | - Ezgi Yılmaz Topuzlu
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
- National
Nanotechnology Research Center (UNAM), Bilkent
University, 06800 Ankara, Turkey
| | - Ferhat Mutlu
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Umay E. Ertekin
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Halil I. Okur
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
- National
Nanotechnology Research Center (UNAM), Bilkent
University, 06800 Ankara, Turkey
| |
Collapse
|
2
|
Pullanchery S, Dupertuis N, Roesel T, Roke S. Liposomes and Lipid Droplets Display a Reversal of Charge-Induced Hydration Asymmetry. NANO LETTERS 2023; 23:9858-9864. [PMID: 37869786 PMCID: PMC10636888 DOI: 10.1021/acs.nanolett.3c02653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/03/2023] [Indexed: 10/24/2023]
Abstract
The unique properties of water are critical for life. Water molecules have been reported to hydrate cations and anions asymmetrically in bulk water, being a key element in the balance of biochemical interactions. We show here that this behavior extends to charged lipid nanoscale interfaces. Charge hydration asymmetry was investigated by using nonlinear light scattering methods on lipid nanodroplets and liposomes. Nanodroplets covered with negatively charged lipids induce strong water ordering, while droplets covered with positively charged lipids induce negligible water ordering. Surprisingly, this charge-induced hydration asymmetry is reversed around liposomes. This opposite behavior in charge hydration asymmetry is caused by a delicate balance of electrostatic and hydrogen-bonding interactions. These findings highlight the importance of not only the charge state but also the specific distribution of neutral and charged lipids in cellular membranes.
Collapse
Affiliation(s)
- Saranya Pullanchery
- Laboratory
for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI),
School of Engineering (STI), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Nathan Dupertuis
- Laboratory
for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI),
School of Engineering (STI), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Tereza Roesel
- Laboratory
for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI),
School of Engineering (STI), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sylvie Roke
- Laboratory
for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI),
School of Engineering (STI), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute
of Materials Science (IMX), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Lausanne
Centre for Ultrafast Science (LACUS), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Pullanchery S, Zhang L, Kulik S, Roke S. Interfacial Inversion, Interference, and IR Absorption in Vibrational Sum Frequency Scattering Experiments. J Phys Chem B 2023; 127:6795-6803. [PMID: 37470215 PMCID: PMC10405221 DOI: 10.1021/acs.jpcb.3c02727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/26/2023] [Indexed: 07/21/2023]
Abstract
Molecular interfacial structure greatly determines the properties of nano- and microscale systems. Vibrational sum frequency scattering (SFS) spectroscopy is a unique interface-selective tool to measure the interfacial vibrational spectrum of sub-micron to micron-scale objects dispersed in liquid and solid media. The interfacial structure is extracted from the interfacial susceptibility, a physical property derived from the intensity. Here, we describe the effect of infrared absorption that occurs in a bulk medium that is spectroscopically complex and use the results to investigate the effects of interfacial inversion, interfacial interference, and interfacial interference combined with absorption. We use the same three chemicals to do so, hexadecane oil, water, and a neutral Span80 surfactant. For all cases, the effective surface susceptibility can be retrieved from the intensity. We further find that inverting the phases results in different interfacial structures, even though they are composed of the same three chemicals, and explain this in terms of the different interactions that are necessary to stabilize the drops: steric stabilization for water drops in oil vs. charge stabilization for oil drops in water. Interfacial interference can be used to estimate the surface density of different compounds.
Collapse
Affiliation(s)
- S. Pullanchery
- Laboratory
for Fundamental BioPhotonics, Institute of Bioengineering (IBI), School
of Engineering (STI), École Polytechnique
Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - L. Zhang
- Laboratory
for Fundamental BioPhotonics, Institute of Bioengineering (IBI), School
of Engineering (STI), École Polytechnique
Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - S. Kulik
- Laboratory
for Fundamental BioPhotonics, Institute of Bioengineering (IBI), School
of Engineering (STI), École Polytechnique
Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - S. Roke
- Laboratory
for Fundamental BioPhotonics, Institute of Bioengineering (IBI), School
of Engineering (STI), École Polytechnique
Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute
of Materials Science and Engineering (IMX), School of Engineering
(STI), École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Lausanne
Centre for Ultrafast Science, École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Golbek TW, Okur HI, Kulik S, Dedic J, Roke S, Weidner T. Lysozyme Interaction with Phospholipid Nanodroplets Probed by Sum Frequency Scattering Vibrational Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6447-6454. [PMID: 37125843 DOI: 10.1021/acs.langmuir.3c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
When a nanoparticle (NP) is introduced into a biological environment, its identity and interactions are immediately attributed to the dense layer of proteins that quickly covers the particle. The formation of this layer, dubbed the protein corona, is in general a combination of proteins interacting with the surface of the NP and a contest between other proteins for binding sites either at the surface of the NP or upon the dense layer. Despite the importance for surface engineering and drug development, the molecular mechanisms and structure behind interfacial biomolecule action have largely remained elusive. We use ultrafast sum frequency scattering (SFS) spectroscopy to determine the structure and the mode of action by which these biomolecules interact with and manipulate interfaces. The majority of work in the field of sum frequency generation has been done on flat model interfaces. This limits some important membrane properties such as membrane fluidity and dimensionality─important factors in biomolecule-membrane interactions. To move toward three-dimensional (3D) nanoscopic interfaces, we utilize SFS spectroscopy to interrogate the surface of 3D lipid monolayers, which can be used as a model lipid-based nanocarrier system. In this study, we have utilized SFS spectroscopy to follow the action of lysozyme. SFS spectra in the amide I region suggest that there is lysozyme at the interface and that the lysozyme induces an increased lipid monolayer order. The binding of lysozyme with the NP is demonstrated by an increase in acyl chain order determined by the ratio of the CH3 symmetric and CH2 symmetric peak amplitudes. Furthermore, the lipid headgroup orientation s-PO2- change strongly supports lysozyme insertion into the lipid layer causing lipid disruption and reorientation. Altogether, with SFS, we have made a huge stride toward understanding the binding and structure change of proteins within the protein corona.
Collapse
Affiliation(s)
| | - Halil I Okur
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bio-engineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department of Chemistry and National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - Sergey Kulik
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bio-engineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jan Dedic
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bio-engineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bio-engineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute of Materials Science and Engineering (IMX), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Pullanchery S, Kulik S, Rehl B, Hassanali A, Roke S. Charge transfer across C-H⋅⋅⋅O hydrogen bonds stabilizes oil droplets in water. Science 2021; 374:1366-1370. [PMID: 34882471 DOI: 10.1126/science.abj3007] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Saranya Pullanchery
- Laboratory for Fundamental BioPhotonics, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sergey Kulik
- Laboratory for Fundamental BioPhotonics, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Benjamin Rehl
- Laboratory for Fundamental BioPhotonics, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ali Hassanali
- International Centre for Theoretical Physics, 34100 Trieste, Italy
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,Institute of Materials Science and Engineering (IMX), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Schönfeldová T, Piller P, Kovacik F, Pabst G, Okur HI, Roke S. Lipid Melting Transitions Involve Structural Redistribution of Interfacial Water. J Phys Chem B 2021; 125:12457-12465. [PMID: 34730965 PMCID: PMC8607985 DOI: 10.1021/acs.jpcb.1c06868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/15/2021] [Indexed: 11/29/2022]
Abstract
Morphological and gel-to-liquid phase transitions of lipid membranes are generally considered to primarily depend on the structural motifs in the hydrophobic core of the bilayer. Structural changes in the aqueous headgroup phase are typically not considered, primarily because they are difficult to quantify. Here, we investigate structural changes of the hydration shells around large unilamellar vesicles (LUVs) in aqueous solution, using differential scanning calorimetry (DSC), and temperature-dependent ζ-potential and high-throughput angle-resolved second harmonic scattering measurements (AR-SHS). Varying the lipid composition from 1,2-dimyristoyl-sn-glycero-3-phosphocholine(DMPC) to 1,2-dimyristoyl-sn-glycero-3-phosphate (DMPA), to 1,2-dimyristoyl-sn-glycero-3-phospho-l-serine (DMPS), we observe surprisingly distinct behavior for the different systems that depend on the chemical composition of the hydrated headgroups. These differences involve changes in hydration following temperature-induced counterion redistribution, or changes in hydration following headgroup reorientation and Stern layer compression.
Collapse
Affiliation(s)
- Tereza Schönfeldová
- Laboratory
for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), Institute of Materials
Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Paulina Piller
- Institute
of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Humboldtstrasse 50/III, Graz 8010, Austria
| | - Filip Kovacik
- Laboratory
for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), Institute of Materials
Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Georg Pabst
- Institute
of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Humboldtstrasse 50/III, Graz 8010, Austria
| | - Halil I. Okur
- Laboratory
for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), Institute of Materials
Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department
of Chemistry and National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - Sylvie Roke
- Laboratory
for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), Institute of Materials
Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Windowless detection geometry for sum frequency scattering spectroscopy in the C-D and amide I regions. Biointerphases 2021; 16:011201. [PMID: 33706523 DOI: 10.1116/6.0000419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Understanding the structure and chemistry of nanoscopic surfaces is an important challenge for biointerface sciences. Sum frequency scattering (SFS) spectroscopy can specifically probe the surfaces of nanoparticles, vesicles, liposomes, and other materials relevant to biomaterial research, and, as a vibrational spectroscopy method, it can provide molecular level information about the surface chemistry. SFS is particularly promising to probe the structure of proteins, and other biological molecules, at nanoparticle surfaces. Here, amide I spectra can provide information about protein folding and orientation, while spectra in the C-D and C-H stretching regions allow experiments to determine the mode of interaction between particle surfaces and proteins. Methods used currently employ a closed liquid cell or cuvette, which works extremely well for C-H and phosphate regions but is often impeded in the amide I and C-D regions by a strong background signal that originates from the window material of the sample cells. Here, we discuss a windowless geometry for collecting background-free and high-fidelity SFS spectra in the amide I and C-D regions. We demonstrate the improvement in spectra quality by comparing SFS spectra of unextruded, multilamellar vesicles in a sample cuvette with those recorded using the windowless geometry. The sample geometry we propose will enable new experiments using SFS as a probe for protein-particle interactions.
Collapse
|
8
|
Monroe J, Barry M, DeStefano A, Aydogan Gokturk P, Jiao S, Robinson-Brown D, Webber T, Crumlin EJ, Han S, Shell MS. Water Structure and Properties at Hydrophilic and Hydrophobic Surfaces. Annu Rev Chem Biomol Eng 2020; 11:523-557. [PMID: 32169001 DOI: 10.1146/annurev-chembioeng-120919-114657] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The properties of water on both molecular and macroscopic surfaces critically influence a wide range of physical behaviors, with applications spanning from membrane science to catalysis to protein engineering. Yet, our current understanding of water interfacing molecular and material surfaces is incomplete, in part because measurement of water structure and molecular-scale properties challenges even the most advanced experimental characterization techniques and computational approaches. This review highlights progress in the ongoing development of tools working to answer fundamental questions on the principles that govern the interactions between water and surfaces. One outstanding and critical question is what universal molecular signatures capture the hydrophobicity of different surfaces in an operationally meaningful way, since traditional macroscopic hydrophobicity measures like contact angles fail to capture even basic properties of molecular or extended surfaces with any heterogeneity at the nanometer length scale. Resolving this grand challenge will require close interactions between state-of-the-art experiments, simulations, and theory, spanning research groups and using agreed-upon model systems, to synthesize an integrated knowledge of solvation water structure, dynamics, and thermodynamics.
Collapse
Affiliation(s)
- Jacob Monroe
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Mikayla Barry
- Department of Materials, University of California, Santa Barbara, California 93106, USA
| | - Audra DeStefano
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Pinar Aydogan Gokturk
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Sally Jiao
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Dennis Robinson-Brown
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Thomas Webber
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Ethan J Crumlin
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; .,Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| |
Collapse
|
9
|
Okur HI, Tarun OB, Roke S. Chemistry of Lipid Membranes from Models to Living Systems: A Perspective of Hydration, Surface Potential, Curvature, Confinement and Heterogeneity. J Am Chem Soc 2019; 141:12168-12181. [DOI: 10.1021/jacs.9b02820] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Halil I. Okur
- Laboratory for Fundamental BioPhotonics
(LBP), Institute of Bioengineering (IBI) and Institute of Materials
Science (IMX), School of Engineering (STI) and Lausanne Center for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Orly B. Tarun
- Laboratory for Fundamental BioPhotonics
(LBP), Institute of Bioengineering (IBI) and Institute of Materials
Science (IMX), School of Engineering (STI) and Lausanne Center for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics
(LBP), Institute of Bioengineering (IBI) and Institute of Materials
Science (IMX), School of Engineering (STI) and Lausanne Center for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Zdrali E, Baer MD, Okur HI, Mundy CJ, Roke S. The Diverse Nature of Ion Speciation at the Nanoscale Hydrophobic/Water Interface. J Phys Chem B 2019; 123:2414-2423. [DOI: 10.1021/acs.jpcb.8b10207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Evangelia Zdrali
- Laboratory for fundamental BioPhotonics, Institutes of Bioengineering and Materials Science and Engineering, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Marcel D. Baer
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Halil I. Okur
- Laboratory for fundamental BioPhotonics, Institutes of Bioengineering and Materials Science and Engineering, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christopher J. Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Sylvie Roke
- Laboratory for fundamental BioPhotonics, Institutes of Bioengineering and Materials Science and Engineering, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Vezočnik V, Hodnik V, Sitar S, Okur HI, Tušek-Žnidarič M, Lütgebaucks C, Sepčić K, Kogej K, Roke S, Žagar E, Maček P. Kinetically Stable Triglyceride-Based Nanodroplets and Their Interactions with Lipid-Specific Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8983-8993. [PMID: 29983071 DOI: 10.1021/acs.langmuir.8b02180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding of the interactions between proteins and natural and artificially prepared lipid membrane surfaces and embedded nonpolar cores is important in studies of physiological processes and their pathologies and is applicable to nanotechnologies. In particular, rapidly growing interest in cellular droplets defines the need for simplified biomimetic lipid model systems to overcome in vivo complexity and variability. We present a protocol for the preparation of kinetically stable nanoemulsions with nanodroplets composed of sphingomyelin (SM) and cholesterol (Chol), as amphiphilic surfactants, and trioleoylglycerol (TOG), at various molar ratios. To prepare stable SM/Chol-coated monodisperse lipid nanodroplets, we modified a reverse phase evaporation method and combined it with ultrasonication. Lipid composition, ζ-potential, gyration and hydrodynamic radius, shape, and temporal stability of the lipid nanodroplets were characterized and compared to extruded SM/Chol large unilamellar vesicles. Lipid nanodroplets and large unilamellar vesicles with theoretical SM/Chol/TOG molar ratios of 1/1/4.7 and 4/1/11.7 were further investigated for the orientational order of their interfacial water molecules using a second harmonic scattering technique, and for interactions with the SM-binding and Chol-binding pore-forming toxins equinatoxin II and perfringolysin O, respectively. The surface characteristics (ζ-potential, orientational order of interfacial water molecules) and binding of these proteins to the nanodroplet SM/Chol monolayers were similar to those for the SM/Chol bilayers of the large unilamellar vesicles and SM/Chol Langmuir monolayers, in terms of their surface structures. We propose that such SM/Chol/TOG nanoparticles with the required lipid compositions can serve as experimental models for monolayer membrane to provide a system that imitates the natural lipid droplets.
Collapse
Affiliation(s)
- Valerija Vezočnik
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , Ljubljana 1000 , Slovenia
| | - Vesna Hodnik
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , Ljubljana 1000 , Slovenia
| | - Simona Sitar
- Department of Polymer Chemistry and Technology , National Institute of Chemistry , Hajdrihova 19 , Ljubljana 1000 , Slovenia
| | - Halil I Okur
- Laboratory for Fundamental BioPhotonics, Institute of Bio-Engineering, and Institute of Material Science, School of Engineering, and Lausanne Centre for Ultrafast Science , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | | | - Cornelis Lütgebaucks
- Laboratory for Fundamental BioPhotonics, Institute of Bio-Engineering, and Institute of Material Science, School of Engineering, and Lausanne Centre for Ultrafast Science , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , Ljubljana 1000 , Slovenia
| | - Ksenija Kogej
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , Ljubljana 1000 , Slovenia
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics, Institute of Bio-Engineering, and Institute of Material Science, School of Engineering, and Lausanne Centre for Ultrafast Science , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Ema Žagar
- Department of Polymer Chemistry and Technology , National Institute of Chemistry , Hajdrihova 19 , Ljubljana 1000 , Slovenia
| | - Peter Maček
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , Ljubljana 1000 , Slovenia
| |
Collapse
|
12
|
Abstract
The principles, strengths and limitations of several nonlinear optical (NLO) methods for characterizing biological systems are reviewed. NLO methods encompass a wide range of approaches that can be used for real-time, in-situ characterization of biological systems, typically in a label-free mode. Multiphoton excitation fluorescence (MPEF) is widely used for high-quality imaging based on electronic transitions, but lacks interface specificity. Second harmonic generation (SHG) is a parametric process that has all the virtues of the two-photon version of MPEF, yielding a signal at twice the frequency of the excitation light, which provides interface specificity. Both SHG and MPEF can provide images with high structural contrast, but they typically lack molecular or chemical specificity. Other NLO methods such as coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) can provide high-sensitivity imaging with chemical information since Raman active vibrations are probed. However, CARS and SRS lack interface and surface specificity. A NLO method that provides both interface/surface specificity as well as molecular specificity is vibrational sum frequency generation (SFG) spectroscopy. Vibration modes that are both Raman and IR active are probed in the SFG process, providing the molecular specificity. SFG, like SHG, is a parametric process, which provides the interface and surface specificity. SFG is typically done in the reflection mode from planar samples. This has yielded rich and detailed information about the molecular structure of biomaterial interfaces and biomolecules interacting with their surfaces. However, 2-D systems have limitations for understanding the interactions of biomolecules and interfaces in the 3-D biological environment. The recent advances made in instrumentation and analysis methods for sum frequency scattering (SFS) now present the opportunity for SFS to be used to directly study biological solutions. By detecting the scattering at angles away from the phase-matched direction even centrosymmetric structures that are isotropic (e.g., spherical nanoparticles functionalized with self-assembled monolayers or biomolecules) can be probed. Often a combination of multiple NLO methods or a combination of a NLO method with other spectroscopic methods is required to obtain a full understanding of the molecular structure and surface chemistry of biomaterials and the biomolecules that interact with them. Using the right combination methods provides a powerful approach for characterizing biological materials.
Collapse
|
13
|
Olenick LL, Troiano JM, Smolentsev N, Ohno PE, Roke S, Geiger FM. Polycation Interactions with Zwitterionic Phospholipid Monolayers on Oil Nanodroplet Suspensions in Water (D2O) Probed by Sum Frequency Scattering. J Phys Chem B 2018; 122:5049-5056. [DOI: 10.1021/acs.jpcb.8b00309] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Laura L. Olenick
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Julianne M. Troiano
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Nikolay Smolentsev
- Laboratory for fundamental BioPhotonics, Institutes of Bioengineering and Materials Science and Engineering, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Paul E. Ohno
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sylvie Roke
- Laboratory for fundamental BioPhotonics, Institutes of Bioengineering and Materials Science and Engineering, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Franz M. Geiger
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Sanders SE, Vanselous H, Petersen PB. Water at surfaces with tunable surface chemistries. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:113001. [PMID: 29393860 DOI: 10.1088/1361-648x/aaacb5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.
Collapse
Affiliation(s)
- Stephanie E Sanders
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States of America
| | | | | |
Collapse
|
15
|
Chen Y, Okur HI, Lütgebaucks C, Roke S. Zwitterionic and Charged Lipids Form Remarkably Different Structures on Nanoscale Oil Droplets in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1042-1050. [PMID: 29019694 DOI: 10.1021/acs.langmuir.7b02896] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The molecular structure of zwitterionic and charged monolayers on small oil droplets in aqueous solutions is determined using a combined second harmonic and sum frequency study. From the interfacial vibrational signature of the acyl chains and phosphate headgroups as well as the response of the hydrating water, we find that zwitterionic and charged lipids with identical acyl chains form remarkably different monolayers. Zwitterionic phospholipids form a closely packed monolayer with highly ordered acyl tails. In contrast, the charged phospholipids form a monolayer with a low number density and disordered acyl tails. The charged headgroups are oriented perpendicular to the monolayer rather than parallel, as is the case for zwitterionic lipids. These significant differences between the two types of phospholipids indicate important roles of phospholipid headgroups in the determination of properties of cellular membranes and lipid droplets. The observed behavior of charged phospholipids is different from expectations based on studies performed on extended planar interfaces, at which condensed monolayers are readily formed. The difference can be explained by nanoscale related changes in charge condensation behavior that has its origin in a different balance of interfacial intermolecular interactions.
Collapse
Affiliation(s)
- Yixing Chen
- Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Halil I Okur
- Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Cornelis Lütgebaucks
- Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Sylvie Roke
- Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| |
Collapse
|