1
|
Nygård M, Ruoff P. Coherent feedback leads to robust background compensation in oscillatory and non-oscillatory homeostats. PLoS One 2023; 18:e0287083. [PMID: 37639439 PMCID: PMC10461855 DOI: 10.1371/journal.pone.0287083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
When in a reaction kinetic integral controller a step perturbation is applied besides a constant background, the concentration of a controlled variable (described as A) will generally respond with decreased response amplitudes ΔA as backgrounds increase. The controller variable E will at the same time provide the necessary compensatory flux to move A back to its set-point. A typical example of decreased response amplitudes at increased backgrounds is found in retinal light adaptation. Due to remarks in the literature that retinal light adaptation would also involve a compensation of backgrounds we became interested in conditions how background compensation could occur. In this paper we describe novel findings how background influences can be robustly eliminated. When such a background compensation is active, oscillatory controllers will respond to a defined perturbation with always the same (damped or undamped) frequency profile, or in the non-oscillatory case, with the same response amplitude ΔA, irrespective of the background level. To achieve background compensation we found that two conditions need to apply: (i) an additional set of integral controllers (here described as I1 and I2) have to be employed to keep the manipulated variable E at a defined set-point, and (ii), I1 and I2 need to feed back to the A-E signaling axis directly through the controlled variable A. In analogy to a similar feedback applied in quantum control theory, we term these feedback conditions as 'coherent feedback'. When analyzing retinal light adaptations in more detail, we find no evidence of the presence of background compensation mechanisms. Although robust background compensation, as described theoretically here, appears to be an interesting regulatory property, relevant biological or biochemical examples still need to be identified.
Collapse
Affiliation(s)
- Melissa Nygård
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Peter Ruoff
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger, Norway
| |
Collapse
|
2
|
Haus ES, Drengstig T, Thorsen K. Structural identifiability of biomolecular controller motifs with and without flow measurements as model output. PLoS Comput Biol 2023; 19:e1011398. [PMID: 37639454 PMCID: PMC10491402 DOI: 10.1371/journal.pcbi.1011398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/08/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
Controller motifs are simple biomolecular reaction networks with negative feedback. They can explain how regulatory function is achieved and are often used as building blocks in mathematical models of biological systems. In this paper we perform an extensive investigation into structural identifiability of controller motifs, specifically the so-called basic and antithetic controller motifs. Structural identifiability analysis is a useful tool in the creation and evaluation of mathematical models: it can be used to ensure that model parameters can be determined uniquely and to examine which measurements are necessary for this purpose. This is especially useful for biological models where parameter estimation can be difficult due to limited availability of measureable outputs. Our aim with this work is to investigate how structural identifiability is affected by controller motif complexity and choice of measurements. To increase the number of potential outputs we propose two methods for including flow measurements and show how this affects structural identifiability in combination with, or in the absence of, concentration measurements. In our investigation, we analyze 128 different controller motif structures using a combination of flow and/or concentration measurements, giving a total of 3648 instances. Among all instances, 34% of the measurement combinations provided structural identifiability. Our main findings for the controller motifs include: i) a single measurement is insufficient for structural identifiability, ii) measurements related to different chemical species are necessary for structural identifiability. Applying these findings result in a reduced subset of 1568 instances, where 80% are structurally identifiable, and more complex/interconnected motifs appear easier to structurally identify. The model structures we have investigated are commonly used in models of biological systems, and our results demonstrate how different model structures and measurement combinations affect structural identifiability of controller motifs.
Collapse
Affiliation(s)
- Eivind S. Haus
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - Tormod Drengstig
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - Kristian Thorsen
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| |
Collapse
|
3
|
Chakravarty S, Hong CI, Csikász-Nagy A. Systematic analysis of negative and positive feedback loops for robustness and temperature compensation in circadian rhythms. NPJ Syst Biol Appl 2023; 9:5. [PMID: 36774353 PMCID: PMC9922291 DOI: 10.1038/s41540-023-00268-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/13/2023] Open
Abstract
Temperature compensation and robustness to biological noise are two key characteristics of the circadian clock. These features allow the circadian pacemaker to maintain a steady oscillation in a wide range of environmental conditions. The presence of a time-delayed negative feedback loop in the regulatory network generates autonomous circadian oscillations in eukaryotic systems. In comparison, the circadian clock of cyanobacteria is controlled by a strong positive feedback loop. Positive feedback loops with substrate depletion can also generate oscillations, inspiring other circadian clock models. What makes a circadian oscillatory network robust to extrinsic noise is unclear. We investigated four basic circadian oscillators with negative, positive, and combinations of positive and negative feedback loops to explore network features necessary for circadian clock resilience. We discovered that the negative feedback loop system performs the best in compensating temperature changes. We also show that a positive feedback loop can reduce extrinsic noise in periods of circadian oscillators, while intrinsic noise is reduced by negative feedback loops.
Collapse
Affiliation(s)
- Suchana Chakravarty
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Christian I Hong
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Attila Csikász-Nagy
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
| |
Collapse
|
4
|
Grini JV, Nygård M, Ruoff P. Homeostasis at different backgrounds: The roles of overlayed feedback structures in vertebrate photoadaptation. PLoS One 2023; 18:e0281490. [PMID: 37115760 PMCID: PMC10146485 DOI: 10.1371/journal.pone.0281490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
We have studied the resetting behavior of eight basic integral controller motifs with respect to different but constant backgrounds. We found that the controllers split symmetrically into two classes: one class, based on derepression of the compensatory flux, leads to more rapid resetting kinetics as backgrounds increase. The other class, which directly activates the compensatory flux, shows a slowing down in the resetting at increased backgrounds. We found a striking analogy between the resetting kinetics of vertebrate photoreceptors and controllers based on derepression, i.e. vertebrate rod or cone cells show decreased sensitivities and accelerated response kinetics as background illuminations increase. The central molecular model of vertebrate photoadaptation consists of an overlay of three negative feedback loops with cytosolic calcium ([Formula: see text]), cyclic guanosine monophosphate (cGMP) and cyclic nucleotide-gated (CNG) channels as components. While in one of the feedback loops the extrusion of [Formula: see text] by potassium-dependent sodium-calcium exchangers (NCKX) can lead to integral control with cGMP as the controlled variable, the expected robust perfect adaptation of cGMP is lost, because of the two other feedback loops. They avoid that [Formula: see text] levels become too high and toxic. Looking at psychophysical laws, we found that in all of the above mentioned basic controllers Weber's law is followed when a "just noticeable difference" (threshold) of 1% of the controlled variable's set-point was considered. Applying comparable threshold pulses or steps to the photoadaptation model we find, in agreement with experimental results, that Weber's law is followed for relatively high backgrounds, while Stephens' power law gives a better description when backgrounds are low. Limitations of our photoadaption model, in particular with respect to potassium/sodium homeostasis, are discussed. Finally, we discuss possible implication of background perturbations in biological controllers when compensatory fluxes are based on activation.
Collapse
Affiliation(s)
- Jonas V Grini
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Melissa Nygård
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Peter Ruoff
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger, Norway
| |
Collapse
|
5
|
Kinetics and mechanisms of catalyzed dual-E (antithetic) controllers. PLoS One 2022; 17:e0262371. [PMID: 35980978 PMCID: PMC9387869 DOI: 10.1371/journal.pone.0262371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/02/2022] [Indexed: 01/26/2023] Open
Abstract
Homeostasis plays a central role in our understanding how cells and organisms are able to oppose environmental disturbances and thereby maintain an internal stability. During the last two decades there has been an increased interest in using control engineering methods, especially integral control, in the analysis and design of homeostatic networks. Several reaction kinetic mechanisms have been discovered which lead to integral control. In two of them integral control is achieved, either by the removal of a single control species E by zero-order kinetics (“single-E controllers”), or by the removal of two control species by second-order kinetics (“antithetic or dual-E control”). In this paper we show results when the control species E1 and E2 in antithetic control are removed enzymatically by ping-pong or ternary-complex mechanisms. Our findings show that enzyme-catalyzed dual-E controllers can work in two control modes. In one mode, one of the two control species is active, but requires zero-order kinetics in its removal. In the other mode, both controller species are active and both are removed enzymatically. Conditions for the two control modes are put forward and biochemical examples with the structure of enzyme-catalyzed dual-E controllers are discussed.
Collapse
|
6
|
Zhang Q, Zhao L, Shen W, Yang S. Subjective tinnitus: lesion-induced pathological central homeostasis remodeling. J Otol 2021; 16:266-272. [PMID: 34548874 PMCID: PMC8438635 DOI: 10.1016/j.joto.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 11/25/2022] Open
Abstract
Subjective tinnitus is the most common type of tinnitus, which is the manifestation of pathological activities in the brain. It happens in a substantial portion of the general population and brings significant burden to the society. Severe subjective tinnitus can lead to depression and insomnia and severely affects patients' quality of life. However, due to poor understanding of its etiology and pathogenesis, treatment of subjective tinnitus remains challenging. In recent decades, a growing number of studies have shown that subjective tinnitus is related to lesion-induced neural plasticity of auditory and non-auditory central systems. This article reviews cellular mechanisms of neural plasticity in subjective tinnitus to provide further understanding of its pathogenesis.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Fuxing Street NO.28, Haidian District, Beijing, 100039, China
| | - Lidong Zhao
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Fuxing Street NO.28, Haidian District, Beijing, 100039, China
| | - Weidong Shen
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Fuxing Street NO.28, Haidian District, Beijing, 100039, China
| | - Shiming Yang
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Fuxing Street NO.28, Haidian District, Beijing, 100039, China
| |
Collapse
|
7
|
Drobac G, Waheed Q, Heidari B, Ruoff P. An amplified derepression controller with multisite inhibition and positive feedback. PLoS One 2021; 16:e0241654. [PMID: 33690601 PMCID: PMC7943023 DOI: 10.1371/journal.pone.0241654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/18/2021] [Indexed: 11/23/2022] Open
Abstract
How organisms are able to maintain robust homeostasis has in recent years received increased attention by the use of combined control engineering and kinetic concepts, which led to the discovery of robust controller motifs. While these motifs employ kinetic conditions showing integral feedback and homeostasis for step-wise perturbations, the motifs’ performance differ significantly when exposing them to time dependent perturbations. One type of controller motifs which are able to handle exponentially and even hyperbolically growing perturbations are based on derepression. In these controllers the compensatory reaction, which neutralizes the perturbation, is derepressed, i.e. its reaction rate is increased by the decrease of an inhibitor acting on the compensatory flux. While controllers in this category can deal well with different time-dependent perturbations they have the disadvantage that they break down once the concentration of the regulatory inhibitor becomes too low and the compensatory flux has gained its maximum value. We wondered whether it would be possible to bypass this restriction, while still keeping the advantages of derepression kinetics. In this paper we show how the inclusion of multisite inhibition and the presence of positive feedback loops lead to an amplified controller which is still based on derepression kinetics but without showing the breakdown due to low inhibitor concentrations. By searching for the amplified feedback motif in natural systems, we found it as a part of the plant circadian clock where it is highly interlocked with other feedback loops.
Collapse
Affiliation(s)
- Gorana Drobac
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Qaiser Waheed
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Behzad Heidari
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Peter Ruoff
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger, Norway
- * E-mail:
| |
Collapse
|
8
|
Ruoff P, Nishiyama N. Frequency switching between oscillatory homeostats and the regulation of p53. PLoS One 2020; 15:e0227786. [PMID: 32433703 PMCID: PMC7239446 DOI: 10.1371/journal.pone.0227786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 05/03/2020] [Indexed: 11/19/2022] Open
Abstract
Homeostasis is an essential concept to understand the stability of organisms and their adaptive behaviors when coping with external and internal assaults. Many hormones that take part in homeostatic control come in antagonistic pairs, such as glucagon and insulin reflecting the inflow and outflow compensatory mechanisms to control a certain internal variable, such as blood sugar levels. By including negative feedback loops homeostatic controllers can exhibit oscillations with characteristic frequencies. In this paper we demonstrate the associated frequency changes in homeostatic systems when individual controllers -in a set of interlocked feedback loops- gain control in response to environmental changes. Taking p53 as an example, we show how Per2, ATM and Mdm2 feedback loops -interlocked with p53- gain individual control in dependence to the level of DNA damage, and how each of these controllers provide certain functionalities in their regulation of p53. In unstressed cells, the circadian regulator Per2 ensures a basic p53 level to allow its rapid up-regulation in case of DNA damage. When DNA damage occurs the ATM controller increases the level of p53 and defends it towards uncontrolled degradation, which despite DNA damage, would drive p53 to lower values and p53 dysfunction. Mdm2 on its side keeps p53 at a high but sub-apoptotic level to avoid premature apoptosis. However, with on-going DNA damage the Mdm2 set-point is increased by HSP90 and other p53 stabilizers leading finally to apoptosis. An emergent aspect of p53 upregulation during cell stress is the coordinated inhibition of ubiquitin-independent and ubiquitin-dependent degradation reactions. Whether oscillations serve a function or are merely a by-product of the controllers are discussed in view of the finding that homeostatic control of p53, as indicated above, does in principle not require oscillatory homeostats.
Collapse
Affiliation(s)
- Peter Ruoff
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger, Norway
- * E-mail:
| | - Nobuaki Nishiyama
- Division of Mathematical and Physical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
9
|
Ruoff P, Agafonov O, Tveit DM, Thorsen K, Drengstig T. Homeostatic controllers compensating for growth and perturbations. PLoS One 2019; 14:e0207831. [PMID: 31404092 PMCID: PMC6690524 DOI: 10.1371/journal.pone.0207831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
Cells and organisms have developed homeostatic mechanisms which protect them against a changing environment. How growth and homeostasis interact is still not well understood, but of increasing interest to the molecular and synthetic biology community to recognize and design control circuits which can oppose the diluting effects of cell growth. In this paper we describe the performance of selected negative feedback controllers in response to different applied growth laws and time dependent outflow perturbations of a controlled variable. The approach taken here is based on deterministic mass action kinetics assuming that cell content is instantaneously mixed. All controllers behave ideal in the sense that they for step-wise perturbations in volume and a controlled compound A are able to drive A precisely back to the controllers' theoretical set-points. The applied growth kinetics reflect experimentally observed growth laws, which range from surface to volume ratio growth to linear and exponential growth. Our results show that the kinetic implementation of integral control and the structure of the negative feedback loop are two properties which affect controller performance. Best performance is observed for controllers based on derepression kinetics and controllers with an autocatalytic implementation of integral control. Both are able to defend exponential growth and perturbations, although the autocatalytic controller shows an offset from its theoretical set-point. Controllers with activating signaling using zero-order or bimolecular (antithetic) kinetics for integral control behave very similar but less well. Their performance can be improved by implementing negative feedback structures having repression/derepression steps or by increasing controller aggressiveness. Our results provide a guide what type of feedback structures and integral control kinetics are suitable to oppose the dilution effects by different growth laws and time dependent perturbations on a deterministic level.
Collapse
Affiliation(s)
- Peter Ruoff
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Oleg Agafonov
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Daniel M. Tveit
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - Kristian Thorsen
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - Tormod Drengstig
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| |
Collapse
|