1
|
Şahin G, Bağda E, Göktuğ Temiz Ö, Bağda E, Ayhan E, Durmuş M. Thermodynamic and structural investigation of the interaction of quaternized 2,3-octakis-[(2-mercaptopyridine)phthalocyaninato] copper (II) sulfate (CuPc) with parallel and hybrid type G-quadruplex. J Mol Recognit 2024; 37:e3072. [PMID: 38126580 DOI: 10.1002/jmr.3072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
G-quadruplexes are important drug targets and get attention due to their existence in telomere, ribosomal DNA, promoter regions of some oncogenes, and the untranslated regions of mRNA. Due to the biological roles of G-quadruplexes, investigating of the G-quadruplex-small molecule interaction is essential. The primary motivation for these studies is the possibility of inhibiting cell functions associated with G-quadruplex sequences by binding with small molecules. Targeting the small molecules to desired tissue with the G-quadruplex vehicles is the second important goal of the G-quadruplex-small molecule interaction studies. In the present study, the new peripherally 2-mercaptopyridine octasubstituted copper(II) phthalocyanine and its quaternized derivative (CuPc) were synthesized and characterized by elemental analysis FT-IR, UV-Vis, and mass spectra. The excellent solubility of CuPc in water is essential for its transport in the organism. Because of this feature, its affinity toward G-quadruplex forming aptamers, AS1411, Tel21, and Tel45, was investigated. The UV-Vis spectrophotometric titration data confirmed the prevention of aggregation upon interaction with G-quadruplex, which is very important for biomedical applications. The CD spectroscopic analyses and binding stoichiometry confirmed the "end stacking" model for interaction of AS1411 with CuPc. The interaction of CuPc caused the equilibrium shift from hybrid conformation to antiparallel conformation for Tel21 and Tel45. The isothermal titration calorimeter (ITC) was used for the determination of thermodynamic parameters. The thermodynamic data of the interaction was fitted well with the one-site model. The negative values of Gibbs free energy change confirmed the spontaneous nature of the reactions. Besides, the negative values of enthalpy change and entropy change proved that the nature of processes was "enthalpy driven." The interaction stoichiometry was 2 for AS1411 and Tel21 and 1.5 for Tel45. The binding constants were 1.3(±0.3) × 105 , 3.2(±0.4) × 105 , and 1.1(±0.3) × 105 M-1 , which were at the level of ethidium bromide intercalation binding constant given in the literature. The DNA polymerase stop assay further supported the interaction of CuPc with G-quadruplex DNA. The experimental results confirm that the CuPc has a potential photosensitizer behaviour for photodynamic therapy.
Collapse
Affiliation(s)
- Gamze Şahin
- Department of Basic Pharmaceutical Sciences, Analytical Chemistry Division, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Esra Bağda
- Department of Basic Pharmaceutical Sciences, Analytical Chemistry Division, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | | | - Efkan Bağda
- Moleculer Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ebubekir Ayhan
- Moleculer Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mahmut Durmuş
- Department of Chemistry, Gebze Technical University, Gebze, Turkey
| |
Collapse
|
2
|
M M, Patidar RK, Tiwari R, Srivastava N, Ranjan N. Nile Blue: A Red-Emissive Fluorescent Dye That Displays Differential Self-Assembly and Binding to G-Quadruplexes. J Phys Chem B 2023; 127:9915-9925. [PMID: 37956021 DOI: 10.1021/acs.jpcb.3c05084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Nile Blue (NB) is a red-emissive dye that is well-known for imaging and staining applications. In this work, we describe the interaction of NB with various types of G-quadruplexes belonging to different topologies, molecularities, and conformations. Using spectroscopic techniques, we have determined the preferential binding of NB to c-Myc G-quadruplex and the other aspects of its binding. Concentration- and temperature-dependent studies showed that NB exists in a dynamic equilibrium between monomeric and H-aggregated states, which could be modulated by the addition of external agents such as anionic surfactants. NB displayed differential self-assembly with different types of G-quadruplex and duplex DNAs modulating its dynamic equilibrium between the monomeric and H-aggregated states. Fluorescence-based displacement studies revealed a 1:1 binding stoichiometry upon interaction with c-Myc G-quadruplex and an association constant of Kapp = 6.7 × 106 M-1. Circular dichroism studies indicated that NB does not cause changes in the overall conformation of either G-quadruplexes or duplexes; however, it does indicate nucleic acid-dependent self-assembly at higher concentrations. Heat capacity measurement showed a more negative change when compared to that in DNA duplex, indicating more burial of the polar surface area by NB to the G-quadruplex host.
Collapse
Affiliation(s)
- Midhun M
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
| | - Rajesh Kumar Patidar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
| | - Ratnesh Tiwari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
| | - Nihar Ranjan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
| |
Collapse
|
3
|
Das A, Chakraborty J, Luikham S, Banerjee S, Bhattacharya J, Dutta S. Targeting aloe active compounds to c-KIT promoter G-quadruplex and comparative study of their anti proliferative property. J Biomol Struct Dyn 2023; 41:9686-9694. [PMID: 36379679 DOI: 10.1080/07391102.2022.2145370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022]
Abstract
Small molecules targeting G-quadruplex of oncogene promoter is considered as a promising anticancer therapeutics approach. Natural aloe compounds aloe emodin, and its glycoside derivative aloe emodin-8-glucoside and aloin have anticancer activity and also have potential DNA binding ability. These three compounds have promising binding ability towards quadruplex structures particularly c-KIT G-quadruplex. Here, this study demonstrates complete biophysical study of these compounds to c-KIT quadruplex structure. Aloe emodin showed highest binding stabilization with c-KIT which has been proved by absorbance, fluorescence, dye displacement, ITC and SPR studies. Moreover, comparative study of these compounds with HCT 116 cells line also agreed to their anti proliferative property which may be helpful to establish these aloe compounds as potential anticancer drugs. This study comprises a complete biophysical study along with their anti proliferative property and demonstrates aloe emodin as a potent c-KIT binding molecule.
Collapse
Affiliation(s)
- Abhi Das
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Jeet Chakraborty
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Soching Luikham
- Department of Chemistry, National Institute of Technology Nagaland, Dimapur, India
| | - Sayanika Banerjee
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Jhimli Bhattacharya
- Department of Chemistry, National Institute of Technology Nagaland, Dimapur, India
| | - Sanjay Dutta
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
4
|
Patidar RK, Tiwari K, Tiwari R, Ranjan N. Promoter G-Quadruplex Binding Styryl Benzothiazolium Derivative for Applications in Ligand Affinity Ranking and as Ethidium Bromide Substitute in Gel Staining. ACS APPLIED BIO MATERIALS 2023. [PMID: 37229607 DOI: 10.1021/acsabm.3c00060] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Fluorescent compounds that can preferentially interact with certain nucleic acids are of great importance in new drug discovery in a multitude of functions including fluorescence-based displacement assays and gel staining. Here, we report the discovery of an orange emissive styryl-benzothiazolium derivative (compound 4) which interacts preferentially with Pu22 G-quadruplex DNA among a pool of nucleic acid structures containing G-quadruplex, duplex, and single-stranded DNA structures as well as RNA structures. Fluorescence-based binding analysis revealed that compound 4 interacts with Pu22 G-quadruplex DNA in a 1:1 DNA to ligand binding stoichiometry. The association constant (Ka) for this interaction was found to be 1.12 (±0.15) × 106 M-1. Circular dichroism studies showed that the binding of the probe does not cause changes in the overall parallel G-quadruplex conformation; however, signs of higher-order complex formation were seen in the form of exciton splitting in the chromophore absorption region. UV-visible spectroscopy studies confirmed the stacking nature of the interaction of the fluorescent probe with the G-quadruplex which was further complemented by heat capacity measurement studies. Finally, we have shown that this fluorescent probe can be used toward G-quadruplex-based fluorescence displacement assays for ligand affinity ranking and as a substitute for ethidium bromide in gel staining.
Collapse
Affiliation(s)
- Rajesh Kumar Patidar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, India 226002
| | - Khushboo Tiwari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, India 226002
| | - Ratnesh Tiwari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, India 226002
| | - Nihar Ranjan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, India 226002
| |
Collapse
|
5
|
Biver T. Discriminating between Parallel, Anti-Parallel and Hybrid G-Quadruplexes: Mechanistic Details on Their Binding to Small Molecules. Molecules 2022; 27:molecules27134165. [PMID: 35807410 PMCID: PMC9268745 DOI: 10.3390/molecules27134165] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
G-quadruplexes (G4) are now extensively recognised as a peculiar non-canonical DNA geometry that plays a prime importance role in processes of biological relevance whose number is increasing continuously. The same is true for the less-studied RNA G4 counterpart. G4s are stable structures; however, their geometrical parameters may be finely tuned not only by the presence of particular sequences of nucleotides but also by the salt content of the medium or by a small molecule that may act as a peculiar topology inducer. As far as the interest in G4s increases and our knowledge of these species deepens, researchers do not only verify the G4s binding by small molecules and the subsequent G4 stabilisation. The most innovative studies now aim to elucidate the mechanistic details of the interaction and the ability of a target species (drug) to bind only to a peculiar G4 geometry. In this focused review, we survey the advances in the studies of the binding of small molecules of medical interest to G4s, with particular attention to the ability of these species to bind differently (intercalation, lateral binding or sitting atop) to different G4 topologies (parallel, anti-parallel or hybrid structures). Some species, given the very high affinity with some peculiar G4 topology, can first bind to a less favourable geometry and then induce its conversion. This aspect is also considered.
Collapse
Affiliation(s)
- Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
6
|
Wittmann C, Bacher F, Enyedy EA, Dömötör O, Spengler G, Madejski C, Reynisson J, Arion VB. Highly Antiproliferative Latonduine and Indolo[2,3- c]quinoline Derivatives: Complex Formation with Copper(II) Markedly Changes the Kinase Inhibitory Profile. J Med Chem 2022; 65:2238-2261. [PMID: 35104137 PMCID: PMC8842277 DOI: 10.1021/acs.jmedchem.1c01740] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
A series of latonduine
and indoloquinoline derivatives HL1–HL8 and their copper(II)
complexes (1–8) were synthesized and comprehensively
characterized. The structures of five compounds (HL6, [CuCl(L1)(DMF)]·DMF, [CuCl(L2)(CH3OH)], [CuCl(L3)]·0.5H2O, and [CuCl2(H2L5)]Cl·2DMF) were elucidated
by single crystal X-ray diffraction. The copper(II) complexes revealed
low micro- to sub-micromolar IC50 values with promising
selectivity toward human colon adenocarcinoma multidrug-resistant
Colo320 cancer cells as compared to the doxorubicin-sensitive Colo205
cell line. The lead compounds HL4 and 4 as well as HL8 and 8 induced apoptosis efficiently in Colo320 cells. In addition, the
copper(II) complexes had higher affinity to DNA than their metal-free
ligands. HL8 showed selective inhibition for
the PIM-1 enzyme, while 8 revealed strong inhibition
of five other enzymes, i.e., SGK-1, PKA, CaMK-1, GSK3β, and
MSK1, from a panel of 50 kinases. Furthermore, molecular modeling
of the ligands and complexes showed a good fit to the binding pockets
of these targets.
Collapse
Affiliation(s)
- Christopher Wittmann
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse, 42, Vienna A1090, Austria
| | - Felix Bacher
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse, 42, Vienna A1090, Austria
| | - Eva A Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary.,MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Orsolya Dömötör
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary.,MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary.,Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Christian Madejski
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse, 42, Vienna A1090, Austria
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, United Kingdom
| | - Vladimir B Arion
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse, 42, Vienna A1090, Austria
| |
Collapse
|
7
|
Nandy A, Shekhar S, Paul BK, Mukherjee S. Exploring the Nucleobase-Specific Hydrophobic Interaction of Cryptolepine Hydrate with RNA and Its Subsequent Sequestration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11176-11187. [PMID: 34499515 DOI: 10.1021/acs.langmuir.1c02123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The study of the interactions of drug molecules with genetic materials plays a key role underlying the development of new drugs for many life-threatening diseases in pharmaceutical industries. Understanding their fundamental base-specific and/or groove-binding interaction is crucial to target the genetic material with an external drug, which can pave the way to curing diseases related to the genetic material. Here, we studied the interaction of cryptolepine hydrate (CRYP) with RNA under physiological conditions knowing the antimalarial and anticancer activities of the drug. Our experiments explicitly demonstrate that CRYP interacts with the guanine- and adenine-rich region within the RNA duplex. The pivotal role of the hydrophobic interaction governing the interaction is substantiated by temperature-dependent isothermal titration calorimetry experiments and spectroscopic studies. Circular dichroism study underpins a principally intercalative mode of binding of CRYP with RNA. This interaction is found to be drastically affected in the presence of magnesium salt, which has a strong propensity to coordinate with RNA nucleobases, which can in turn modulate the interaction of the drug with RNA. The temperature-dependent calorimetric results substantiate the occurrence of entropy-enthalpy compensation, which enabled us to rule out the possibility of groove binding of the drug with RNA. Furthermore, our results also show the application of host-guest chemistry in sequestering the RNA-bound drug, which is crucial to the development of safer therapeutic applications.
Collapse
Affiliation(s)
- Atanu Nandy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Shashi Shekhar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Bijan K Paul
- Department of Chemistry, Mahadevananda Mahavidyalaya, Barrackpore, Kolkata 700120, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
8
|
Santos T, Salgado GF, Cabrita EJ, Cruz C. G-Quadruplexes and Their Ligands: Biophysical Methods to Unravel G-Quadruplex/Ligand Interactions. Pharmaceuticals (Basel) 2021; 14:769. [PMID: 34451866 PMCID: PMC8401999 DOI: 10.3390/ph14080769] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Progress in the design of G-quadruplex (G4) binding ligands relies on the availability of approaches that assess the binding mode and nature of the interactions between G4 forming sequences and their putative ligands. The experimental approaches used to characterize G4/ligand interactions can be categorized into structure-based methods (circular dichroism (CD), nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography), affinity and apparent affinity-based methods (surface plasmon resonance (SPR), isothermal titration calorimetry (ITC) and mass spectrometry (MS)), and high-throughput methods (fluorescence resonance energy transfer (FRET)-melting, G4-fluorescent intercalator displacement assay (G4-FID), affinity chromatography and microarrays. Each method has unique advantages and drawbacks, which makes it essential to select the ideal strategies for the biological question being addressed. The structural- and affinity and apparent affinity-based methods are in several cases complex and/or time-consuming and can be combined with fast and cheap high-throughput approaches to improve the design and development of new potential G4 ligands. In recent years, the joint use of these techniques permitted the discovery of a huge number of G4 ligands investigated for diagnostic and therapeutic purposes. Overall, this review article highlights in detail the most commonly used approaches to characterize the G4/ligand interactions, as well as the applications and types of information that can be obtained from the use of each technique.
Collapse
Affiliation(s)
- Tiago Santos
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Gilmar F. Salgado
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR 5320, IECB, 33607 Pessac, France;
| | - Eurico J. Cabrita
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Carla Cruz
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| |
Collapse
|
9
|
Das A, Dutta S. Binding Studies of Aloe-Active Compounds with G-Quadruplex Sequences. ACS OMEGA 2021; 6:18344-18351. [PMID: 34308065 PMCID: PMC8296576 DOI: 10.1021/acsomega.1c02207] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/02/2021] [Indexed: 05/04/2023]
Abstract
G-quadruplex, a unique DNA quartet motif with a pivotal role in regulation of the gene expression, has been established as a potent therapeutic target for the treatment of cancer. Small-molecule-mediated stabilization of the G-quadruplex and thus inhibition of the expression from the oncogene promoter and telomere region may be a promising anticancer strategy. Aloe vera-derived natural compounds like aloe emodin, aloe emodin-8-glucoside, and aloin have significant anticancer activity. Comparative binding studies of these three molecules with varieties of G-quadruplex sequences were carried out using different biophysical techniques like absorption spectral titration, fluorescence spectral titration, dye displacement, ferrocyanide quenching assay, and CD and DSC thermogram studies. Overall, this study revealed aloe emodin and aloe emodin-8-glucoside as potent quadruplex-binding molecules mostly in the case of c-KIT and c-MYC sequences with a binding affinity value of 105 order that is higher than their duplex DNA binding ability. This observation may be correlated to the anticancer activity of these aloe-active compounds and also be helpful in the potential therapeutic application of natural compound-based molecules.
Collapse
|
10
|
Mohr S, Jana J, Vianney YM, Weisz K. Expanding the Topological Landscape by a G-Column Flip of a Parallel G-Quadruplex. Chemistry 2021; 27:10437-10447. [PMID: 33955615 PMCID: PMC8361731 DOI: 10.1002/chem.202101181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 01/14/2023]
Abstract
Canonical G‐quadruplexes can adopt a variety of different topologies depending on the arrangement of propeller, lateral, or diagonal loops connecting the four G‐columns. A novel intramolecular G‐quadruplex structure is derived through inversion of the last G‐tract of a three‐layered parallel fold, associated with the transition of a single propeller into a lateral loop. The resulting (3+1) hybrid fold features three syn⋅anti⋅anti⋅anti G‐tetrads with a 3’‐terminal all‐syn G‐column. Although the ability of forming a duplex stem‐loop between G‐tracts seems beneficial for a propeller‐to‐lateral loop rearrangement, unmodified G‐rich sequences resist folding into the new (3+1) topology. However, refolding can be driven by the incorporation of syn‐favoring guanosine analogues into positions of the fourth G‐stretch. The presented hybrid‐type G‐quadruplex structure as determined by NMR spectroscopy may provide for an additional scaffold in quadruplex‐based technologies.
Collapse
Affiliation(s)
- Swantje Mohr
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Jagannath Jana
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Yoanes Maria Vianney
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Klaus Weisz
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| |
Collapse
|
11
|
Liu T, Liu M, Liu H, Ren Y, Zhao Y, Yan H, Wang Q, Zhang N, Ding Z, Wang Z. Co-encapsulation of (-)-epigallocatechin-3-gallate and piceatannol/oxyresveratrol in β-lactoglobulin: effect of ligand-protein binding on the antioxidant activity, stability, solubility and cytotoxicity. Food Funct 2021; 12:7126-7144. [PMID: 34180492 DOI: 10.1039/d1fo00481f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The co-encapsulation of multiple bioactive components in a carrier may produce synergistic effects and improve health benefits. In this study, the interactions of β-lactoglobulin (β-LG) with epigallocatechin-3-gallate (EGCG) and/or piceatannol (PIC)/oxyresveratrol (OXY) were investigated by multispectroscopic techniques, isothermal titration calorimetry, and molecular docking. The static quenching mechanism of β-LG by EGCG, PIC and OXY was confirmed by fluorescence spectroscopy and UV-vis absorption difference spectroscopy. The binding sites of these three polyphenols in β-LG were identified by site marking fluorescence experiments and molecular docking. The thermodynamic parameters of the β-LG + EGCG/PIC/OXY binary complex and β-LG + EGCG + PIC/OXY ternary complex were obtained from fluorescence data and used to analyze the main driving force for complex formation. The exothermic binding process was further confirmed by isothermal titration calorimetry. The α-helical content, particle size and morphology of free and ligand-bound β-LG were determined by circular dichroism spectroscopy, dynamic light scattering and transmission electron microscopy, respectively. The effect of EGCG, PIC and OXY on the conformation of β-LG was studied by Fourier transform infrared spectroscopy. In addition, the maximum synergistic antioxidant activity between EGCG and PIC/OXY was obtained by response surface analysis. The effects of β-LG in the binary and ternary systems on the antioxidant activity, stability, solubility and cytotoxicity of the polyphenols were also studied. Finally, the different cytotoxicities of the complexes and nanoparticles of the binary and ternary systems were compared. The results of this study are expected to provide a theoretical basis for the development of β-LG-based carriers co-encapsulating a variety of bioactive components.
Collapse
Affiliation(s)
- Tingting Liu
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Vianney YM, Preckwinkel P, Mohr S, Weisz K. Quadruplex-Duplex Junction: A High-Affinity Binding Site for Indoloquinoline Ligands. Chemistry 2020; 26:16910-16922. [PMID: 32975874 PMCID: PMC7756412 DOI: 10.1002/chem.202003540] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/21/2020] [Indexed: 12/23/2022]
Abstract
A parallel quadruplex derived from the Myc promoter sequence was extended by a stem-loop duplex at either its 5'- or 3'-terminus to mimic a quadruplex-duplex (Q-D) junction as a potential genomic target. High-resolution structures of the hybrids demonstrate continuous stacking of the duplex on the quadruplex core without significant perturbations. An indoloquinoline ligand carrying an aminoalkyl side chain was shown to bind the Q-D hybrids with a very high affinity in the order Ka ≈107 m-1 irrespective of the duplex location at the quadruplex 3'- or 5'-end. NMR chemical shift perturbations identified the tetrad face of the Q-D junction as specific binding site for the ligand. However, calorimetric analyses revealed significant differences in the thermodynamic profiles upon binding to hybrids with either a duplex extension at the quadruplex 3'- or 5'-terminus. A large enthalpic gain and considerable hydrophobic effects are accompanied by the binding of one ligand to the 3'-Q-D junction, whereas non-hydrophobic entropic contributions favor binding with formation of a 2:1 ligand-quadruplex complex in case of the 5'-Q-D hybrid.
Collapse
Affiliation(s)
- Yoanes Maria Vianney
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Pit Preckwinkel
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Swantje Mohr
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Klaus Weisz
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| |
Collapse
|
13
|
Schnarr L, Jana J, Preckwinkel P, Weisz K. Impact of a Snap-Back Loop on Stability and Ligand Binding to a Parallel G-Quadruplex. J Phys Chem B 2020; 124:2778-2787. [DOI: 10.1021/acs.jpcb.0c00700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lena Schnarr
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Strasse 4, D-17487 Greifswald, Germany
| | - Jagannath Jana
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Strasse 4, D-17487 Greifswald, Germany
| | - Pit Preckwinkel
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Strasse 4, D-17487 Greifswald, Germany
| | - Klaus Weisz
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Strasse 4, D-17487 Greifswald, Germany
| |
Collapse
|
14
|
Funke A, Weisz K. Revealing the Energetics of Ligand-Quadruplex Interactions Using Isothermal Titration Calorimetry. Methods Mol Biol 2019; 2035:45-61. [PMID: 31444743 DOI: 10.1007/978-1-4939-9666-7_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The thermodynamic characterization of G4-ligand interactions has shown to be a powerful adjunct to structural information in the rational design and optimization of potent G-quadruplex ligands for use in therapeutics, diagnostics, or other technological applications. Isothermal titration calorimetry (ITC) can resolve energetic contributions to complex formation and constitutes the only available experimental method to directly measure binding enthalpies. A general protocol for using ITC in studies on quadruplex-ligand interactions with details on the experimental setup, data analysis, and potential pitfalls is presented. The methodologies used are illustrated on results obtained from the targeting of a parallel DNA G-quadruplex with a G4-binding indoloquinoline derivative.
Collapse
Affiliation(s)
- Andrea Funke
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Klaus Weisz
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
15
|
Funke A, Weisz K. Thermodynamic signature of indoloquinolines interacting with G-quadruplexes: Impact of ligand side chain. Biochimie 2018; 157:142-148. [PMID: 30481540 DOI: 10.1016/j.biochi.2018.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
Abstract
Binding of indoloquinolines with different aliphatic side chains to a parallel G-quadruplex derived from the MYC promoter sequence was characterized by optical and calorimetric measurements. ITC experiments performed at different temperatures enabled the determination of molar heat capacity changes upon quadruplex binding and a partitioning of the total binding free enthalpy into contributing terms with hydrophobic effects being major driving forces for all derivatives. Whereas affinities increase for indoloquinolines equipped with a long and positively charged side arm, the highest contribution of specific intermolecular interactions anticipated to impart enhanced specificity is found for a ligand with an uncharged ether aliphatic tail. Obtained thermodynamic signatures may considerably aid in the rational selection of ligand side chains for G-quadruplex binders with enhanced affinity or selectivity.
Collapse
Affiliation(s)
- Andrea Funke
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, D-17487, Greifswald, Germany
| | - Klaus Weisz
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, D-17487, Greifswald, Germany.
| |
Collapse
|
16
|
Manna S, Srivatsan SG. Fluorescence-based tools to probe G-quadruplexes in cell-free and cellular environments. RSC Adv 2018; 8:25673-25694. [PMID: 30210793 PMCID: PMC6130854 DOI: 10.1039/c8ra03708f] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/08/2018] [Indexed: 12/26/2022] Open
Abstract
Biophysical and biochemical investigations provide compelling evidence connecting the four-stranded G-quadruplex (GQ) structure with its role in regulating multiple cellular processes. Hence, modulating the function of GQs by using small molecule binders is being actively pursued as a strategy to develop new chemotherapeutic agents. However, sequence diversity and structural polymorphism of GQs have posed immense challenges in terms of understanding what conformation a G-rich sequence adopts inside the cell and how to specifically target a GQ motif amidst several other GQ-forming sequences. In this context, here we review recent developments in the applications of biophysical tools that use fluorescence readout to probe the GQ structure and recognition in cell-free and cellular environments. First, we provide a detailed discussion on the utility of covalently labeled environment-sensitive fluorescent nucleoside analogs in assessing the subtle difference in GQ structures and their ligand binding abilities. Furthermore, a detailed discussion on structure-specific antibodies and small molecule probes used to visualize and confirm the existence of DNA and RNA GQs in cells is provided. We also highlight the open challenges in the study of tetraplexes (GQ and i-motif structures) and how addressing these challenges by developing new tools and techniques will have a profound impact on tetraplex-directed therapeutic strategies.
Collapse
Affiliation(s)
- Sudeshna Manna
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), PuneDr. Homi Bhabha RoadPune 411008India
| | - Seergazhi G. Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), PuneDr. Homi Bhabha RoadPune 411008India
| |
Collapse
|
17
|
Paul S, Samanta A. Ground- and Excited-State Interactions of a Psoralen Derivative with Human Telomeric G-Quadruplex DNA. J Phys Chem B 2018; 122:2277-2286. [PMID: 29376354 DOI: 10.1021/acs.jpcb.7b12475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
G-quadruplex DNA has been a recent target for anticancer agents, and its binding interactions with small molecules, often used as anticancer drugs, have become an important area of research. Considering that psoralens have long been studied in the context of duplex DNA but that very little is known about their potential as G-quadruplex binders and their excited-state interaction with the latter has not been explored, we have studied herein the binding of a planar water-soluble psoralen derivative, 4'-aminomethyl-4,5',8-trimethylpsoralen (AMT), with the 22-mer human telomeric G-quadruplex-forming sequence, AGGG(TTAGGG)3, labeled here as (hTel22), and investigated the consequences of photoexcitation of AMT by calorimetric and spectroscopic techniques. The results show an enthalpy-driven 1:1 binding of AMT with hTel22 via end-stacking mode. Fluorescence quenching experiments on 6-fluorescein amidite-labeled oligomers indicate that the binding site is nearer to the 3' end of hTel22 in the diagonal loop region. Femtosecond time-resolved transient absorption measurements indicate electron transfer from the guanine moiety of hTel22 to photoexcited AMT, leading to the formation of a radical pair species (AMT•-G•+), which survives for 30 ps and is favored by a parallel/quasi-parallel orientation between the two. The findings reveal psoralens as a prospective class of compounds for the development of anticancer therapeutics by targeting the G-quadruplex DNA.
Collapse
Affiliation(s)
- Sneha Paul
- School of Chemistry, University of Hyderabad , Hyderabad 500046, India
| | - Anunay Samanta
- School of Chemistry, University of Hyderabad , Hyderabad 500046, India
| |
Collapse
|
18
|
Funke A, Karg B, Dickerhoff J, Balke D, Müller S, Weisz K. Ligand-Induced Dimerization of a Truncated Parallel MYC G-Quadruplex. Chembiochem 2018; 19:505-512. [PMID: 29228465 DOI: 10.1002/cbic.201700593] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Indexed: 02/04/2023]
Abstract
Binding of an indoloquinoline derivative with an aminoalkyl side chain to a truncated sequence from the MYC promoter region was studied through isothermal titration calorimetry (ITC). The targeted MYC3 sequence lacks 3'-flanking nucleotides and forms a monomeric parallel quadruplex (G4) with a blunt-ended 3'-outer tetrad under the solution conditions employed. Analysis of ITC isotherms reveals multiple binding equilibria with the initial formation of a 1:2 ligand/quadruplex complex. Evaluation of electrophoretic mobilities as well as NMR spectral data confirm ligand-induced dimerization of MYC3 quadruplexes with the ligand sandwiched between the two 3'-outer tetrads. Additional ligand molecules in excess bind to the 5'-outer tetrads of the sandwich complex. Such a ligand-promoted G4 dimerization may be exploited for the controlled assembly or disassembly of G4 aggregates to expand on present quadruplex-based technologies.
Collapse
Affiliation(s)
- Andrea Funke
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Beatrice Karg
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Jonathan Dickerhoff
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Darko Balke
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Sabine Müller
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Klaus Weisz
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| |
Collapse
|