1
|
Li N, Li X, Ming X, Chen J, Chen Y, Zhou L, Yao R, Yao Y. Cu 2+-mediated telomeric dimeric G-quadruplex DNAzyme for highly sensitive colorimetric detection of deferasirox. Talanta 2025; 283:127116. [PMID: 39476802 DOI: 10.1016/j.talanta.2024.127116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/01/2024] [Accepted: 10/26/2024] [Indexed: 12/11/2024]
Abstract
Deferasirox (DEF) is an important iron chelator for treatment of iron overload-related diseases. Monitoring DEF concentration in human serum will provide some valuable information for clinical diagnosis and therapy of such diseases. In this study, we developed a peroxidase-mimicking colorimetric sensor for the detection of DEF by simple assembly of a telomeric dimeric G-quadruplex DNAzyme with Cu2+. The DNAzyme-catalyzed oxidation of 3,3',5,5'-tetramethylbenzidine in the presence of H2O2 can generate a quantitative colorimetric signal, and the color change can be discerned by the naked eye. Compared with the reaction rate of the monomeric G-quadruplex-Cu2+ DNAzyme, the reaction rate of the dimeric G-quadruplex-Cu2+ (G2-Cu2+) DNAzyme is significantly accelerated, and the reaction rate gradually increases and then reaches a plateau with increasing number of TTA spacers. Herein, the G2-Cu2+ DNAzyme is chosen for the highly sensitive detection of DEF based on the DEF-Cu2+ complex-induced inhibition of its peroxidase-mimicking activities. The limit of detection (LOD) of DEF is achieved as low as 0.03 μM, and the linear range is from 0.05 to 1.2 μM. The proposed strategy exhibits excellent selectivity in the presence of potential interferents, such as metal ions and small molecules. Importantly, the G2-Cu2+ DNAzyme is further expanded to detect DEF in dispersible tablets and human serum samples. Overall, this G2-Cu2+ DNAzyme provides a simple, low-cost, and rapid platform for DEF detection. This novel strategy is the first example of DEF analysis by utilizing signal amplification technology based on the G-quadruplex DNAzyme and holds great potential for DEF quality control and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Na Li
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Higher Education, Guangxi Medical University, Nanning, 530021, China.
| | - Xian Li
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Higher Education, Guangxi Medical University, Nanning, 530021, China
| | - Xiaoe Ming
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Higher Education, Guangxi Medical University, Nanning, 530021, China
| | - Jingyuan Chen
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Higher Education, Guangxi Medical University, Nanning, 530021, China
| | - Yeyi Chen
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Higher Education, Guangxi Medical University, Nanning, 530021, China
| | - Lifen Zhou
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Higher Education, Guangxi Medical University, Nanning, 530021, China
| | - Ruirui Yao
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Higher Education, Guangxi Medical University, Nanning, 530021, China
| | - Yuqi Yao
- Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Higher Education, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
2
|
Olave B. DNA nanotechnology in ionic liquids and deep eutectic solvents. Crit Rev Biotechnol 2024; 44:941-961. [PMID: 37518062 DOI: 10.1080/07388551.2023.2229950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 08/01/2023]
Abstract
Nucleic acids have the ability to generate advanced nanostructures in a controlled manner and can interact with target sequences or molecules with high affinity and selectivity. For this reason, they have applications in a variety of nanotechnology applications, from highly specific sensors to smart nanomachines and even in other applications such as enantioselective catalysis or drug delivery systems. However, a common disadvantage is the use of water as the ubiquitous solvent. The use of nucleic acids in non-aqueous solvents offers the opportunity to create a completely new toolbox with unprecedented degrees of freedom. Ionic liquids (ILs) and deep eutectic solvents (DESs) are the most promising alternative solvents due to their unique electrolyte and solvent roles, as well as their ability to maintain the stability and functionality of nucleic acids. This review aims to be a comprehensive, critical, and accessible evaluation of how much this goal has been achieved and what are the most critical parameters for accomplishing a breakthrough.
Collapse
Affiliation(s)
- Beñat Olave
- University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| |
Collapse
|
3
|
Majumder P, Shukla C, Arya A, Sharma S, Datta B. G-quadruplexes in MTOR and induction of autophagy. Sci Rep 2024; 14:2525. [PMID: 38291093 PMCID: PMC10827794 DOI: 10.1038/s41598-024-52561-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/20/2024] [Indexed: 02/01/2024] Open
Abstract
G-quadruplex (G4) structures have emerged as singular therapeutic targets for cancer and neurodegeneration. Autophagy, a crucial homeostatic mechanism of the cell, is often dysregulated in neurodegenerative diseases and cancers. We used QGRS mapper to identify 470 G4 sequences in MTOR, a key negative regulator of autophagy. We sought to identify a functional context by leveraging the effect of G4-targeting ligands on MTOR G4 sequences. The effect of Bis-4,3, a G4 selective dimeric carbocyanine dye, was compared with the known G4-stabilizing activity of the porphyrin, TMPyP4 in HeLa and SHSY-5Y cells. Our results show that treatment with G4-selective ligands downregulates MTOR RNA and mTOR protein expression levels. This is the first report describing G4 motifs in MTOR. This study indicates a possible role of G4 stabilizing ligands in induction of autophagy by downregulation of mTOR levels, albeit not precluding MTOR independent pathways.
Collapse
Affiliation(s)
- Piyali Majumder
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Chinmayee Shukla
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Arjun Arya
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Shubham Sharma
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Bhaskar Datta
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
4
|
Badalyan M, Vardanyan IV, Haroutiunian SG, Dalyan YB. Structural Transitions in Complementary G-Rich and C-Rich Strands and Their Mixture at Various pH Conditions. ACS OMEGA 2023; 8:47051-47056. [PMID: 38107945 PMCID: PMC10719991 DOI: 10.1021/acsomega.3c06934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/11/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
We used circular dichroism spectroscopy, UV spectrophotometry, and differential scanning calorimetry to investigate pH-dependent structural transitions in an equimolar mixture of complementary G-rich d[5'-A(GGGTTA)3GGG-3'] (TelG) and C-rich d[3'-T(CCCAAT)3CCC-5'] (TelC) human telomeric DNA strands. Our studies were conducted at neutral (pH 7.0) and slightly acidic (pH 5.5 and 6.5) pH. We analyzed the melting thermodynamics of TelG and TelC and their equimolar mixture. Our analysis revealed that the preferred conformation of an equimolar mixture of TelG and TelC is the duplex. At pH 5.5, however, in addition to the duplex state, we observed a significant population of the i-motif state formed by TelC. Our results are consistent with the picture in which an increase in pH from 5.5 to 7.0 has little effect on the melting enthalpy of an isolated G-quadruplex while causing a strong reduction in the melting enthalpy of an isolated i-motif (the latter diminishes to 0 at pH 7.0). These effects summarily lead to a decrease in the contribution of the i-motif to the melting enthalpy of the mixture and, hence, an increase in the apparent melting enthalpy and overall stability of the duplex state.
Collapse
Affiliation(s)
- Milena
Kh. Badalyan
- Department of Molecular Physics, Yerevan State University, Yerevan 0025, Armenia
| | - Ishkhan V. Vardanyan
- Department of Molecular Physics, Yerevan State University, Yerevan 0025, Armenia
| | | | - Yeva B. Dalyan
- Department of Molecular Physics, Yerevan State University, Yerevan 0025, Armenia
| |
Collapse
|
5
|
Tariq N, Xu C, Wang J, Kume T, Macgregor RB. Enhancement of the thermal stability of G-quadruplex structures by urea. Biophys Chem 2023; 299:107043. [PMID: 37285661 DOI: 10.1016/j.bpc.2023.107043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
The solute urea has been used extensively as a denaturant in protein folding studies; double-stranded nucleic acid structures are also destabilized by urea, but comparatively less than proteins. In previous research, the solute has been shown to strongly destabilize folded G-quadruplex DNA structures. This contribution demonstrates the stabilizing effect of urea on the G-quadruplex formed by the oligodeoxyribonucleotide (ODN), G3T (d[5'-GGGTGGGTGGGTGGG-3']), and related sequences in the presence of sodium or potassium cations. Stabilization is observed up to 7 M urea, which was the highest concentration we investigated. The folded structure of G3T has three G-tetrads and three loops that consist of single thymine residues. ODNs related to G3T, in which the thymine residues in the loop are substituted by adenosine residues, also exhibit enhanced stability in the presence of molar concentrations of urea. The circular dichroism (CD) spectra of these ODNs in the presence of urea are consistent with that of a G-quadruplex. As the urea concentration increases, the spectral intensities of the peaks and troughs change, while their positions change very little. The heat-induced transition from the folded to unfolded state, Tm, was measured by monitoring the change in the UV absorption as a function of temperature. G-quadruplex structures with loops containing single bases exhibited large increases in Tm with increasing urea concentrations. These data imply that the loop region play a significant role in the thermal stability of tetra-helical DNA structures in the presence of the solute urea.
Collapse
Affiliation(s)
- Nabeel Tariq
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Christine Xu
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Jingtong Wang
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Takuma Kume
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Robert B Macgregor
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada.
| |
Collapse
|
6
|
Interface of G-quadruplex with both stabilizing and destabilizing ligands for targeting various diseases. Int J Biol Macromol 2022; 219:414-427. [DOI: 10.1016/j.ijbiomac.2022.07.248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022]
|
7
|
Hoog TG, Pawlak MR, Bachan BF, Engelhart AE. DNA G-quadruplexes are uniquely stable in the presence of denaturants and monovalent cations. Biochem Biophys Rep 2022; 30:101238. [PMID: 35243016 PMCID: PMC8885576 DOI: 10.1016/j.bbrep.2022.101238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
Ions in the Hofmeister series exhibit varied effects on biopolymers. Those classed as kosmotropes generally stabilize secondary structure, and those classed as chaotropes generally destabilize secondary structure. Here, we report that several anionic chaotropes exhibit unique effects on one DNA secondary structure - a G quadruplex. These chaotropes exhibit the expected behaviour (destabilization of secondary structure) in two other structural contexts: a DNA duplex and i-Motifs. Uniquely among secondary structures, we observe that G quadruplexes are comparatively insensitive to the presence of anionic chaotropes, but not other denaturants. Further, the presence of equimolar NaCl provided greater mitigation of the destabilization caused by other non-anionic denaturants. These results are consistent with the presence of monovalent cations providing an especially pronounced stabilizing effect to G quadruplexes when studied in denaturing solution conditions. G-quadruplexes exhibit the lowest sensitivity to denaturation by anionic chaotropes among several DNA secondary structures. In G-quadruplexes, the destabilizing effect of other denaturants is uniquely well-mitigated by the presence of sodium ions. This phenomenon affords a structure-specific means of modulating nucleic acid folding.
Collapse
|
8
|
Tariq N, Kume T, Feroze UN, Macgregor RB. The Pressure Dependence of the Stability of the G-quadruplex Formed by d(TGGGGT). Life (Basel) 2022; 12:life12050765. [PMID: 35629431 PMCID: PMC9144232 DOI: 10.3390/life12050765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/27/2022] Open
Abstract
The G-quadruplex (GQ), a tetrahelix formed by guanine-rich nucleic acid sequences, is a potential drug target for several diseases. Monomolecular GQs are stabilized by guanine tetrads and non-guanine regions that form loops. Hydrostatic pressure destabilizes the folded, monomolecular GQ structures. In this communication, we present data on the effect of pressure on the conformational stability of the tetramolecular GQ, d[5′-TGGGGT-3′]4. This molecule does not have loops linking the tetrads; thus, its physical properties presumably reflect those of the tetrads alone. Understanding the properties of the tetrads will aid in understanding the contribution of the other structural components to the stability of GQ DNA. By measuring UV light absorption, we have studied the effect of hydrostatic pressure on the thermal stability of the tetramolecular d[5′-TGGGGT-3′]4 in the presence of sodium ions. Our data show that, unlike monomolecular GQ, the temperature at which d[5′-TGGGGT-3′]4 dissociates to form the constituent monomers is nearly independent of pressure up to 200 MPa. This implies that there is no net molar volume difference (∆V) between the GQ and the unfolded random-coil states. This finding further suggests that the large negative ∆V values for the unfolding of monomolecular GQ are due to the presence of the loop regions in those structures.
Collapse
|
9
|
Wu X, Chen Q, Yang C, Ning Q, Liu Z. An enhanced visual detection assay for Listeria monocytogenes in food based on isothermal amplified peroxidase-mimicking catalytic beacon. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
Tariq N, Kume T, Luo L, Cai Z, Dong S, Macgregor RB. Dimethyl sulfoxide (DMSO) as a stabilizing co-solvent for G-quadruplex DNA. Biophys Chem 2022; 282:106741. [DOI: 10.1016/j.bpc.2021.106741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
|
11
|
Mukherjee SK, Knop JM, Winter RHA. Modulation of the Conformational Space of SARS-CoV-2 RNA Quadruplex RG-1 by Cellular Components and the Amyloidogenic Peptides α-Synuclein and hIAPP. Chemistry 2021; 28:e202104182. [PMID: 34882862 PMCID: PMC9015630 DOI: 10.1002/chem.202104182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Indexed: 11/10/2022]
Abstract
Given the emergence of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), which particularly threatens older people with comorbidities such as diabetes mellitus and dementia, understanding the relationship between Covid-19 and other diseases is an important factor for treatment. Possible targets for medical intervention include G-quadruplexes (G4Qs) and their protein interaction partners. We investigated the stability and conformational space of the RG-1 RNA-G-quadruplex of the SARS-CoV-2 N-gene in the presence of salts, cosolutes, crowders and intrinsically disordered peptides, focusing on α-Synuclein and the human islet amyloid polypeptide, which are involved in Parkinson's disease (PD) and type-II diabetes mellitus (T2DM), respectively. We found that the conformational dynamics of the RG-1 G4Q is strongly affected by the various solution conditions. Further, the amyloidogenic peptides were found to strongly modulate the conformational equilibrium of the RG-1. Considerable changes are observed with respect to their interaction with human telomeric G4Qs, which adopt different topologies. These results may therefore shed more light on the relationship between PD as well as T2DM and the SARS-CoV-2 disease and their molecular underpinnings. Since dysregulation of G4Q formation by rationally designed targeting compounds affects the control of cellular processes, this study should contribute to the development of specific ligands for intervention.
Collapse
Affiliation(s)
- Sanjib K Mukherjee
- TU Dortmund University: Technische Universitat Dortmund, Chemistry and Chemical Biology, GERMANY
| | - Jim-Marcel Knop
- TU Dortmund University: Technische Universitat Dortmund, Chemistry and Chemical Biology, GERMANY
| | - Roland Hermann Alfons Winter
- TU Dortmund University, Chemistry and Chemical Biology, Otto-Hahn Str. 4a, Physical Chemistry I, 44227, Dortmund, GERMANY
| |
Collapse
|
12
|
Chalikian TV, Macgregor RB. Volumetric Properties of Four-Stranded DNA Structures. BIOLOGY 2021; 10:813. [PMID: 34440045 PMCID: PMC8389613 DOI: 10.3390/biology10080813] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/27/2022]
Abstract
Four-stranded non-canonical DNA structures including G-quadruplexes and i-motifs have been found in the genome and are thought to be involved in regulation of biological function. These structures have been implicated in telomere biology, genomic instability, and regulation of transcription and translation events. To gain an understanding of the molecular determinants underlying the biological role of four-stranded DNA structures, their biophysical properties have been extensively studied. The limited libraries on volume, expansibility, and compressibility accumulated to date have begun to provide insights into the molecular origins of helix-to-coil and helix-to-helix conformational transitions involving four-stranded DNA structures. In this article, we review the recent progress in volumetric investigations of G-quadruplexes and i-motifs, emphasizing how such data can be used to characterize intra-and intermolecular interactions, including solvation. We describe how volumetric data can be interpreted at the molecular level to yield a better understanding of the role that solute-solvent interactions play in modulating the stability and recognition events of nucleic acids. Taken together, volumetric studies facilitate unveiling the molecular determinants of biological events involving biopolymers, including G-quadruplexes and i-motifs, by providing one more piece to the thermodynamic puzzle describing the energetics of cellular processes in vitro and, by extension, in vivo.
Collapse
Affiliation(s)
- Tigran V. Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada;
| | | |
Collapse
|
13
|
Chang T, He S, Amini R, Li Y. Functional Nucleic Acids Under Unusual Conditions. Chembiochem 2021; 22:2368-2383. [PMID: 33930229 DOI: 10.1002/cbic.202100087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/24/2021] [Indexed: 02/06/2023]
Abstract
Functional nucleic acids (FNAs), including naturally occurring ribozymes and riboswitches as well as artificially created DNAzymes and aptamers, have been popular molecular toolboxes for diverse applications. Given the high chemical stability of nucleic acids and their ability to fold into diverse sequence-dependent structures, FNAs are suggested to be highly functional under unusual reaction conditions. This review will examine the progress of research on FNAs under conditions of low pH, high temperature, freezing conditions, and the inclusion of organic solvents and denaturants that are known to disrupt nucleic acid structures. The FNA species to be discussed include ribozymes, riboswitches, G-quadruplex-based peroxidase mimicking DNAzymes, RNA-cleaving DNAzymes, and aptamers. Research within this space has not only revealed the hidden talents of FNAs but has also laid important groundwork for pursuing these intriguing functional macromolecules for unique applications.
Collapse
Affiliation(s)
- Tianjun Chang
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
- Department of Biology, Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, Henan, P. R. China
| | - Sisi He
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
- School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen, 518055, Guangdong, P. R. China
| | - Ryan Amini
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| |
Collapse
|
14
|
Chalikian TV, Liu L, Macgregor RB. Duplex-tetraplex equilibria in guanine- and cytosine-rich DNA. Biophys Chem 2020; 267:106473. [PMID: 33031980 DOI: 10.1016/j.bpc.2020.106473] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Noncanonical four-stranded DNA structures, including G-quadruplexes and i-motifs, have been discovered in the cell and are implicated in a variety of genomic regulatory functions. The tendency of a specific guanine- and cytosine-rich region of genomic DNA to adopt a four-stranded conformation depends on its ability to overcome the constraints of duplex base-pairing by undergoing consecutive duplex-to-coil and coil-to-tetraplex transitions. The latter ability is determined by the balance between the free energies of participating ordered and disordered structures. In this review, we present an overview of the literature on the stability of G-quadruplex and i-motif structures and discuss the extent of duplex-tetraplex competition as a function of the sequence context of the DNA and environmental conditions including temperature, pH, salt, molecular crowding, and the presence of G-quadruplex-binding ligands. We outline how the results of in vitro studies can be expanded to understanding duplex-tetraplex equilibria in vivo.
Collapse
Affiliation(s)
- Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| | - Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Robert B Macgregor
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
15
|
Raghunathan S, Jaganade T, Priyakumar UD. Urea-aromatic interactions in biology. Biophys Rev 2020; 12:65-84. [PMID: 32067192 PMCID: PMC7040157 DOI: 10.1007/s12551-020-00620-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Noncovalent interactions are key determinants in both chemical and biological processes. Among such processes, the hydrophobic interactions play an eminent role in folding of proteins, nucleic acids, formation of membranes, protein-ligand recognition, etc.. Though this interaction is mediated through the aqueous solvent, the stability of the above biomolecules can be highly sensitive to any small external perturbations, such as temperature, pressure, pH, or even cosolvent additives, like, urea-a highly soluble small organic molecule utilized by various living organisms to regulate osmotic pressure. A plethora of detailed studies exist covering both experimental and theoretical regimes, to understand how urea modulates the stability of biological macromolecules. While experimentalists have been primarily focusing on the thermodynamic and kinetic aspects, theoretical modeling predominantly involves mechanistic information at the molecular level, calculating atomistic details applying the force field approach to the high level electronic details using the quantum mechanical methods. The review focuses mainly on examples with biological relevance, such as (1) urea-assisted protein unfolding, (2) urea-assisted RNA unfolding, (3) urea lesion interaction within damaged DNA, (4) urea conduction through membrane proteins, and (5) protein-ligand interactions those explicitly address the vitality of hydrophobic interactions involving exclusively the urea-aromatic moiety.
Collapse
Affiliation(s)
- Shampa Raghunathan
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Tanashree Jaganade
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - U Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India.
| |
Collapse
|
16
|
Patra S, Schuabb V, Kiesel I, Knop JM, Oliva R, Winter R. Exploring the effects of cosolutes and crowding on the volumetric and kinetic profile of the conformational dynamics of a poly dA loop DNA hairpin: a single-molecule FRET study. Nucleic Acids Res 2019; 47:981-996. [PMID: 30418613 PMCID: PMC6344865 DOI: 10.1093/nar/gky1122] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022] Open
Abstract
We investigated the volumetric and kinetic profile of the conformational landscape of a poly dA loop DNA hairpin (Hp) in the presence of salts, osmolytes and crowding media, mimicking the intracellular milieu, using single-molecule FRET methodology. Pressure modulation was applied to explore the volumetric and hydrational characteristics of the free-energy landscape of the DNA Hp, but also because pressure is a stress factor many organisms have to cope with, e.g. in the deep sea where pressures even up to the kbar level are encountered. Urea and pressure synergistically destabilize the closed conformation of the DNA Hp due to a lower molar partial volume in the unfolded state. Conversely, multivalent salts, trimethylamine-N-oxide and Ficoll strongly populate the closed state and counteract deteriorating effects of pressure. Complementary smFRET measurements under immobilized conditions at ambient pressure allowed us to dissect the equilibrium data in terms of folding and unfolding rate constants of the conformational transitions, leading to a deeper understanding of the stabilization mechanisms of the cosolutes. Our results show that the free-energy landscape of the DNA Hp is a rugged one, which is markedly affected by the ionic strength of the solution, by preferential interaction and exclusion of cosolvents as well as by pressure.
Collapse
Affiliation(s)
- Satyajit Patra
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| | - Vitor Schuabb
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| | - Irena Kiesel
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| | - Jim-Marcel Knop
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cinita, 80126 Naples, Italy
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| |
Collapse
|
17
|
Jaganade T, Chattopadhyay A, Pazhayam NM, Priyakumar UD. Energetic, Structural and Dynamic Properties of Nucleobase-Urea Interactions that Aid in Urea Assisted RNA Unfolding. Sci Rep 2019; 9:8805. [PMID: 31217494 PMCID: PMC6584539 DOI: 10.1038/s41598-019-45010-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/28/2019] [Indexed: 01/21/2023] Open
Abstract
Understanding the structure-function relationships of RNA has become increasingly important given the realization of its functional role in various cellular processes. Chemical denaturation of RNA by urea has been shown to be beneficial in investigating RNA stability and folding. Elucidation of the mechanism of unfolding of RNA by urea is important for understanding the folding pathways. In addition to studying denaturation of RNA in aqueous urea, it is important to understand the nature and strength of interactions of the building blocks of RNA. In this study, a systematic examination of the structural features and energetic factors involving interactions between nucleobases and urea is presented. Results from molecular dynamics (MD) simulations on each of the five DNA/RNA bases in water and eight different concentrations of aqueous urea, and free energy calculations using the thermodynamic integration method are presented. The interaction energies between all the nucleobases with the solvent environment and the transfer free energies become more favorable with respect to increase in the concentration of urea. Preferential interactions of urea versus water molecules with all model systems determined using Kirkwood-Buff integrals and two-domain models indicate preference of urea by nucleobases in comparison to water. The modes of interaction between urea and the nucleobases were analyzed in detail. In addition to the previously identified hydrogen bonding and stacking interactions between urea and nucleobases that stabilize the unfolded states of RNA in aqueous solution, NH-π interactions are proposed to be important. Dynamic properties of each of these three modes of interactions have been presented. The study provides fundamental insights into the nature of interaction of urea molecules with nucleobases and how it disrupts nucleic acids.
Collapse
Affiliation(s)
- Tanashree Jaganade
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Aditya Chattopadhyay
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Nila M Pazhayam
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - U Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India.
| |
Collapse
|
18
|
Arns L, Knop JM, Patra S, Anders C, Winter R. Single-molecule insights into the temperature and pressure dependent conformational dynamics of nucleic acids in the presence of crowders and osmolytes. Biophys Chem 2019; 251:106190. [PMID: 31146215 DOI: 10.1016/j.bpc.2019.106190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 11/19/2022]
Abstract
In this review we discuss results from temperature and pressure dependent single-molecule Förster resonance energy transfer (smFRET) studies on nucleic acids in the presence of macromolecular crowders and organic osmolytes. As representative examples, we have chosen fragments of both DNAs and RNAs, i.e., a synthetic DNA hairpin, a human telomeric G-quadruplex and the microROSE RNA hairpin. To mimic the effects of intracellular components, our studies include the macromolecular crowding agent Ficoll, a copolymer of sucrose and epichlorohydrin, and the organic osmolytes trimethylamine N-oxide, urea and glycine as well as natural occurring osmolyte mixtures from deep sea organisms. Furthermore, the impact of mutations in an RNA sequence on the conformational dynamics is examined. Different from proteins, the effects of the osmolytes and crowding agents seem to strongly dependent on the structure and chemical make-up of the nucleic acid.
Collapse
Affiliation(s)
- Loana Arns
- TU Dortmund University, Faculty of Chemistry and Chemical Biology, Physical Chemistry, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Jim-Marcel Knop
- TU Dortmund University, Faculty of Chemistry and Chemical Biology, Physical Chemistry, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Satyajit Patra
- Aix Marseille Université, CNRS, Centralle Marseille, Institut Fresnel, F-13013 Marseille, France
| | - Christian Anders
- TU Dortmund University, Faculty of Chemistry and Chemical Biology, Physical Chemistry, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Roland Winter
- TU Dortmund University, Faculty of Chemistry and Chemical Biology, Physical Chemistry, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany.
| |
Collapse
|
19
|
Ma Y, Geng F, Wang Y, Xu M, Shao C, Qu P, Zhang Y, Ye B. Novel strategy to improve the sensing performances of split ATP aptamer based fluorescent indicator displacement assay through enhanced molecular recognition. Biosens Bioelectron 2019; 134:36-41. [PMID: 30954924 DOI: 10.1016/j.bios.2019.03.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/24/2022]
Abstract
Split aptamer strategy was often used to improve the sensitivity of aptasensor. However, traditional split aptamer strategy can not be directly used to improve the label-free aptamer based Thioflavin T (ThT) displacement assay for ATP because the split ATP aptamer display much lower enhancement effects on the fluorescence of ThT than intact aptamer. In order to address this issue, this is the first report using G-rich DNA sequence to enhance the affinity of the two split ATP aptamer halves to ThT and offer lower limit of detection (LOD), wider linear range and higher selectivity through the enhanced molecular recognition. Compared to the intact aptamer/ThT complex, the ensemble of two G-rich split ATP aptamer fragments/ThT are higher fluorescent. Consequently, G-rich sequences would improve the fluorescent signal and thus the sensing performance of the proposed assay. In the optimized conditions, the LOD of the proposed fluorescent ATP aptasensor is 2 nM, which is lower than the reported ThT/ATP aptamer based methods. Additionally, our aptasensor has a wider dynamic linear range (0.1 μM - 120 μM) and higher selectivity. The proposed aptasensor has been successfully applied to detect ATP in 15% human serum. More importantly, the current study not only provides a novel method for ATP assay but also presents a way to construct a label-free split aptamer based fluorescent sensor for other species where aptamer can be generated.
Collapse
Affiliation(s)
- Yu Ma
- College of Chemistry and Molecular Engeering, Zhengzhou University, Zhengzhou, 450001, China
| | - Fenghua Geng
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engeering, Henan Joint International Research Laboratory of Chemo, Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Yongxiang Wang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engeering, Henan Joint International Research Laboratory of Chemo, Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China; College of Chemistry and Material Science, Huaibei Normal University, Huaibei, 235000, China.
| | - Maotian Xu
- College of Chemistry and Molecular Engeering, Zhengzhou University, Zhengzhou, 450001, China; Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engeering, Henan Joint International Research Laboratory of Chemo, Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Congying Shao
- College of Chemistry and Material Science, Huaibei Normal University, Huaibei, 235000, China
| | - Peng Qu
- College of Chemistry and Molecular Engeering, Zhengzhou University, Zhengzhou, 450001, China; Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engeering, Henan Joint International Research Laboratory of Chemo, Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Yintang Zhang
- College of Chemistry and Molecular Engeering, Zhengzhou University, Zhengzhou, 450001, China; Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engeering, Henan Joint International Research Laboratory of Chemo, Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Baoxian Ye
- College of Chemistry and Molecular Engeering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
20
|
Bianchi F, Comez L, Biehl R, D’Amico F, Gessini A, Longo M, Masciovecchio C, Petrillo C, Radulescu A, Rossi B, Sacchetti F, Sebastiani F, Violini N, Paciaroni A. Structure of human telomere G-quadruplex in the presence of a model drug along the thermal unfolding pathway. Nucleic Acids Res 2018; 46:11927-11938. [PMID: 30407585 PMCID: PMC6294516 DOI: 10.1093/nar/gky1092] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/28/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
A multi-technique approach, combining circular dichroism spectroscopy, ultraviolet resonance Raman spectroscopy and small angle scattering techniques, has been deployed to elucidate how the structural features of the human telomeric G-quadruplex d[A(GGGTTA)3GGG] (Tel22) change upon thermal unfolding. The system is studied both in the free form and when it is bound to Actinomycin D (ActD), an anticancer ligand with remarkable conformational flexibility. We find that at room temperature binding of Tel22 with ActD involves end-stacking upon the terminal G-tetrad. Structural evidence for drug-driven dimerization of a significant fraction of the G-quadruplexes is provided. When the temperature is raised, both free and bound Tel22 undergo melting through a multi-state process. We show that in the intermediate states of Tel22 the conformational equilibrium is shifted toward the (3+1) hybrid-type, while a parallel structure is promoted in the complex. The unfolded state of the free Tel22 is consistent with a self-avoiding random-coil conformation, whereas the high-temperature state of the complex is observed to assume a quite compact form. Such an unprecedented high-temperature arrangement is caused by the persistent interaction between Tel22 and ActD, which stabilizes compact conformations even in the presence of large thermal structural fluctuations.
Collapse
Affiliation(s)
- Federico Bianchi
- Dipartimento di Fisica e Geologia, Università di Perugia, 06123 Perugia, Italy
| | - Lucia Comez
- IOM-CNR c/o Dipartimento di Fisica e Geologia, Università di Perugia, 06123 Perugia, Italy
| | - Ralf Biehl
- JCNS & ICS, Forschungszentrum Jülich GmbH, Leo-Brandt Strasse, 52425 Jülich, Germany
| | - Francesco D’Amico
- Elettra-Sincrotrone Trieste, Strada Statale 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Alessandro Gessini
- Elettra-Sincrotrone Trieste, Strada Statale 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Marialucia Longo
- JCNS at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Juelich GmbH, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Claudio Masciovecchio
- Elettra-Sincrotrone Trieste, Strada Statale 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Caterina Petrillo
- Dipartimento di Fisica e Geologia, Università di Perugia, 06123 Perugia, Italy
| | - Aurel Radulescu
- JCNS at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Juelich GmbH, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Barbara Rossi
- Elettra-Sincrotrone Trieste, Strada Statale 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Francesco Sacchetti
- Dipartimento di Fisica e Geologia, Università di Perugia, 06123 Perugia, Italy
| | - Federico Sebastiani
- Lehrstuhl für Physikalische Chemie 2, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Nicolò Violini
- JCNS, Forschungszentrum Jülich GmbH, Leo-Brandt Strasse, 52425 Jülich, Germany
| | | |
Collapse
|
21
|
Knop JM, Patra S, Harish B, Royer CA, Winter R. The Deep Sea Osmolyte Trimethylamine N-Oxide and Macromolecular Crowders Rescue the Antiparallel Conformation of the Human Telomeric G-Quadruplex from Urea and Pressure Stress. Chemistry 2018; 24:14346-14351. [PMID: 29993151 DOI: 10.1002/chem.201802444] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/04/2018] [Indexed: 11/10/2022]
Abstract
Organisms are thriving in the deep sea at pressures up to the 1 kbar level, which imposes severe stress on the conformational dynamics and stability of their biomolecules. The impact of osmolytes and macromolecular crowders, mimicking intracellular conditions, on the effect of pressure on the conformational dynamics of a human telomeric G-quadruplex (G4) DNA is explored in this study employing single-molecule Förster resonance energy transfer (FRET) experiments. In neat buffer, pressurization favors the parallel/hybrid state of the G4-DNA over the antiparallel conformation at ≈400 bar, finally leading to unfolding beyond 1000 bar. High-pressure NMR data support these findings. The folded topological conformers have different solvent accessible surface areas and cavity volumes, leading to different volumetric properties and hence pressure stabilities. The deep-sea osmolyte trimethylamine N-oxide (TMAO) and macromolecular crowding agents are able to effectively rescue the G4-DNA from unfolding in the whole pressure range encountered on Earth.
Collapse
Affiliation(s)
- Jim-Marcel Knop
- Physikalische Chemie I-Biophysikalische Chemie, Fakultät für Chemie und Chemische Biologie, TU Dortmund, Otto-Hahn Str. 4a, 44227, Dortmund, Germany
| | - Satyajit Patra
- Physikalische Chemie I-Biophysikalische Chemie, Fakultät für Chemie und Chemische Biologie, TU Dortmund, Otto-Hahn Str. 4a, 44227, Dortmund, Germany
| | - Balasubramanian Harish
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, 12180, NY, USA
| | - Catherine A Royer
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, 12180, NY, USA
| | - Roland Winter
- Physikalische Chemie I-Biophysikalische Chemie, Fakultät für Chemie und Chemische Biologie, TU Dortmund, Otto-Hahn Str. 4a, 44227, Dortmund, Germany
| |
Collapse
|