1
|
Nikolaev B, Yakovleva L, Fedorov V, Yudintceva N, Tarasova D, Perepelitsa E, Dmitrieva A, Sulatsky M, Srinivasan S, Sonawane SH, Srivastava A, Gupta S, Sonawane A, Combs SE, Shevtsov M. A New Method for Accelerated Aging of Nanoparticles to Assess the Colloidal Stability of Albumin-Coated Magnetic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:475. [PMID: 40214521 PMCID: PMC11990806 DOI: 10.3390/nano15070475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
The colloidal long-storage stability of nanosized drugs is a crucial factor for pharmacology, as they require much time for robust estimation. The application of bioavailable magnetic nanosuspensions in theranostics is limited by incomplete information about their colloidal stability in the internal media of human organisms. A method for the accelerated temperature stress "aging" of magnetic nanosized suspensions is proposed for the rapid assessment and prediction of the colloidal stability over time of nanosized iron oxide suspensions stabilized by albumin HSA. Colloidal stability is assessed using dynamic light scattering (DLS), fluorescence spectroscopy, electrophoresis, and ion monitoring methods during short- and long-term storage. Rapid assessment is achieved by short high-temperature (70 °C) processing of carboxymethyl-dextran-coated nanosol in the presence of albumin. The role of albumin in the sustained stability of superparamagnetic iron oxide particles (SPIONs) was studied under conditions mimicking blood plasma (pH = 7.4) and endolysosomal cell compartments (pH = 5.5). According to the fluorescence quenching and DLS data, colloidal stability is ensured by the formation of an HSA corona on carboxymethyl-dextran-coated SPIONs and their process of clustering. In the presence of albumin, the colloidal stability of nanoparticles is shown to increase from 80 to 121 days at a storage temperature of 8 °C The prognostic shelf life of magnetic nanosol is estimated by calculating the Van't Hoff's relation for the rate of chemical reactions. The validity of using the Van't Hoff's rule is confirmed by the agreement of the calculated activation energy at 8 °C and 70 °C. The developed method of the accelerated aging of nanoparticles can not only be employed for the estimation of the shelf life of magnetic nanoparticles coated with HSA in vitro but also for assessing the stability of SPIONs applied in vivo.
Collapse
Affiliation(s)
- Boris Nikolaev
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (B.N.); (L.Y.); (V.F.); (N.Y.); (D.T.); (A.D.); (M.S.)
| | - Ludmila Yakovleva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (B.N.); (L.Y.); (V.F.); (N.Y.); (D.T.); (A.D.); (M.S.)
| | - Viacheslav Fedorov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (B.N.); (L.Y.); (V.F.); (N.Y.); (D.T.); (A.D.); (M.S.)
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
- Department of Inorganic Chemistry and Biophysics, Saint-Petersburg State University of Veterinary Medicine, 196084 Saint-Petersburg, Russia
| | - Natalia Yudintceva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (B.N.); (L.Y.); (V.F.); (N.Y.); (D.T.); (A.D.); (M.S.)
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| | - Daria Tarasova
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (B.N.); (L.Y.); (V.F.); (N.Y.); (D.T.); (A.D.); (M.S.)
| | | | - Anastasia Dmitrieva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (B.N.); (L.Y.); (V.F.); (N.Y.); (D.T.); (A.D.); (M.S.)
| | - Maksim Sulatsky
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (B.N.); (L.Y.); (V.F.); (N.Y.); (D.T.); (A.D.); (M.S.)
| | - Sivaprakash Srinivasan
- Department of Chemical Engineering, National Institute of Technology, Warangal 506004, Telangana State, India; (S.S.); (S.H.S.)
| | - Shirish H. Sonawane
- Department of Chemical Engineering, National Institute of Technology, Warangal 506004, Telangana State, India; (S.S.); (S.H.S.)
| | - Anusha Srivastava
- Department of Biosciences & Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India; (A.S.); (S.G.); (A.S.)
| | - Sharad Gupta
- Department of Biosciences & Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India; (A.S.); (S.G.); (A.S.)
| | - Avinash Sonawane
- Department of Biosciences & Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India; (A.S.); (S.G.); (A.S.)
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (B.N.); (L.Y.); (V.F.); (N.Y.); (D.T.); (A.D.); (M.S.)
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
| |
Collapse
|
2
|
Wei X, Shi X, Yang M, Tan Q, Xu Z, Ma B, Pan D, Wu W. Phosphate and illite colloid pose a synergistic risk of enhanced uranium transport in groundwater: A challenge for phosphate immobilization remediation of uranium contaminated environmental water. WATER RESEARCH 2024; 255:121514. [PMID: 38554633 DOI: 10.1016/j.watres.2024.121514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/13/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
The phosphorus-containing reagents have been proposed to remediate the uranium contaminated sites due to the formation of insoluble uranyl phosphate mineralization products. However, the colloids, including both pseudo and intrinsic uranium colloids, could disturb the environmental fate of uranium due to its nonnegligible mobility. In this work, the transport pattern and micro-mechanism of uranium coupled to phosphate and illite colloid (IC) were investigated by combining column experiments and micro-spectroscopic evidences. Results showed that uranium transport was facilitated in granular media by forming the intrinsic uranyl phosphate colloid (such as Na-autunite) when the pH > 3.5 and CNa+ < 10 mM. Meanwhile, the mobility of uranium depended greatly on the typical water chemistry parameters governing the aggregation and deposit of intrinsic uranium colloids. However, the attachment of phosphate on illite granule increased the repulsive force and enhanced the dispersion stability of IC in the IC-U(VI)-phosphate ternary system. The non-preequilibrium transport and retention profiles, HRTEM-mapping, as well as TRLFS spectra revealed that the IC enhanced uranium mobility by forming the ternary IC-uranyl phosphate hybrid, and acted as the coagulation preventing agent for uranyl phosphate particles. This observed facilitation of uranium transport resulted from the formation of intrinsic uranyl phosphate colloids and IC-uranyl phosphate hybrids should be taken into consideration when evaluating the potential risk of uranium migration and optimizing the in-situ mineralization remediation strategy for uranium contaminated environmental water.
Collapse
Affiliation(s)
- Xiaoyan Wei
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China; Laboratory for Waste Management, Paul Scherrer Institut (PSI), CH-5232 Villigen PSI, Switzerland
| | - Xinyi Shi
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Meilin Yang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Qi Tan
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhen Xu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Bin Ma
- Laboratory for Waste Management, Paul Scherrer Institut (PSI), CH-5232 Villigen PSI, Switzerland; College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Duoqiang Pan
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China; School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Wangsuo Wu
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China; School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Takács D, Adžić M, Omerović N, Vraneš M, Katona J, Pavlović M. Electrolyte-induced aggregation of zein protein nanoparticles in aqueous dispersions. J Colloid Interface Sci 2024; 656:457-465. [PMID: 38006868 DOI: 10.1016/j.jcis.2023.11.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Ion specific effects on the charging and aggregation features of zein nanoparticles (ZNP) were studied in aqueous suspensions by electrophoretic and time-resolved dynamic light scattering techniques. The influence of mono- and multivalent counterions on the colloidal stability was investigated for positively and negatively charged particles at pH values below and above the isoelectric point, respectively. The sequence of the destabilization power of monovalent salts followed the prediction of the indirect Hofmeister series for positively charged particles, while the direct Hofmeister series for negatively charged ones assumed a hydrophobic character for their surface. The multivalent ions destabilized the oppositely charged ZNPs more effectively and the aggregation process followed the Schulze-Hardy rule. For some multivalent ions, strong adsorption led to charge reversal resulting in restabilization of the suspensions. The experimental critical coagulation concentrations (CCCs) could be well-predicted with the theory developed by Derjaguin, Landau, Verwey and Overbeek indicating that the aggregation processes were mainly driven by electrical double layer repulsion and van der Waals attraction. The ion specific dependence of the CCCs is owing to the modification of the surface charge through ion adsorption at different extents. These results are crucial for drug delivery applications, where inorganic electrolytes are present in ZNP samples.
Collapse
Affiliation(s)
- Dóra Takács
- MTA-SZTE Lendület Biocolloids Research Group, Department of Physical Chemistry and Materials Science, University of Szeged, 6720 Szeged, Hungary
| | - Maja Adžić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Nejra Omerović
- BioSense Institute, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Milan Vraneš
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Jaroslav Katona
- Department of Applied and Engineering Chemistry, Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Marko Pavlović
- BioSense Institute, University of Novi Sad, 21000 Novi Sad, Serbia; Department of Physics and John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA-02138 Cambridge, USA.
| |
Collapse
|
4
|
Wei W. Hofmeister Effects Shine in Nanoscience. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302057. [PMID: 37211703 PMCID: PMC10401134 DOI: 10.1002/advs.202302057] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Hofmeister effects play a crucial role in nanoscience by affecting the physicochemical and biochemical processes. Thus far, numerous wonderful applications from various aspects of nanoscience have been developed based on the mechanism of Hofmeister effects, such as hydrogel/aerogel engineering, battery design, nanosynthesis, nanomotors, ion sensors, supramolecular chemistry, colloid and interface science, nanomedicine, and transport behaviors, etc. In this review, for the first time, the progress of applying Hofmeister effects is systematically introduced and summarized in nanoscience. It is aimed to provide a comprehensive guideline for future researchers to design more useful Hofmeister effects-based nanosystems.
Collapse
Affiliation(s)
- Weichen Wei
- Department of NanoengineeringUniversity of California San DiegoLa JollaSan DiegoCA92093USA
| |
Collapse
|
5
|
Jaramillo-Fierro X, León R. Effect of Doping TiO 2 NPs with Lanthanides (La, Ce and Eu) on the Adsorption and Photodegradation of Cyanide-A Comparative Study. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061068. [PMID: 36985962 PMCID: PMC10055693 DOI: 10.3390/nano13061068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 06/01/2023]
Abstract
Free cyanide is a highly dangerous compound for health and the environment, so treatment of cyanide-contaminated water is extremely important. In the present study, TiO2, La/TiO2, Ce/TiO2, and Eu/TiO2 nanoparticles were synthesized to assess their ability to remove free cyanide from aqueous solutions. Nanoparticles synthesized through the sol-gel method were characterized by X-ray powder diffractometry (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier-transformed infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS), and specific surface area (SSA). Langmuir and Freundlich isotherm models were utilized to fit the adsorption equilibrium experimental data, and pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were used to fit the adsorption kinetics experimental data. Cyanide photodegradation and the effect of reactive oxygen species (ROS) on the photocatalytic process were investigated under simulated solar light. Finally, reuse of the nanoparticles in five consecutive treatment cycles was determined. The results showed that La/TiO2 has the highest percentage of cyanide removal (98%), followed by Ce/TiO2 (92%), Eu/TiO2 (90%), and TiO2 (88%). From these results, it is suggested that La, Ce, and Eu dopants can improve the properties of TiO2 as well as its ability to remove cyanide species from aqueous solutions.
Collapse
Affiliation(s)
- Ximena Jaramillo-Fierro
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| | - Ricardo León
- Maestría en Química Aplicada, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| |
Collapse
|
6
|
Adsorption mechanisms of activated surface of quartz and feldspar with mixed NaOL/DDA. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
7
|
Comparative Study of the Effect of Doping ZnTiO 3 with Rare Earths (La and Ce) on the Adsorption and Photodegradation of Cyanide in Aqueous Systems. Int J Mol Sci 2023; 24:ijms24043780. [PMID: 36835191 PMCID: PMC9960395 DOI: 10.3390/ijms24043780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/16/2023] Open
Abstract
Cyanide is a highly toxic compound that can pose serious health problems to both humans and aquatic organisms. Therefore, the present comparative study focuses on the removal of total cyanide from aqueous solutions by photocatalytic adsorption and degradation methods using ZnTiO3 (ZTO), La/ZnTiO3 (La/ZTO), and Ce/ZnTiO3 (Ce/ZTO). The nanoparticles were synthesized by the sol-gel method and characterized by X-ray powder diffractometry (XRD), Scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS), Diffuse reflectance spectroscopy (DRS), and Specific surface area (SSA). The adsorption equilibrium data were fitted to the Langmuir and Freundlich isotherm models. Adsorption kinetics were also evaluated using the pseudo-first-order and pseudo-second-order models and the intraparticle diffusion model. Likewise, the photodegradation of cyanide under simulated sunlight was investigated and the reusability of the synthesized nanoparticles for cyanide removal in aqueous systems was determined. The results demonstrated the effectiveness of doping with lanthanum (La) and cerium (Ce) to improve the adsorbent and photocatalytic properties of ZTO. In general, La/ZTO showed the maximum percentage of total cyanide removal (99.0%) followed by Ce/ZTO (97.0%) and ZTO (93.6%). Finally, based on the evidence of this study, a mechanism for the removal of total cyanide from aqueous solutions using the synthesized nanoparticles was proposed.
Collapse
|
8
|
Aggregation and charging of natural allophane particles in the presence of oxyanions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Qiu X, Ding L, Zhang C, Ouyang Z, Jia H, Guo X, Zhu L. Exposed facets mediated interaction of polystyrene nanoplastics (PSNPs) with iron oxides nanocrystal. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128994. [PMID: 35490633 DOI: 10.1016/j.jhazmat.2022.128994] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Nanoplastics (NPs), which are often detected in the natural environment, are regarded as a group of emerging pollutants. Hematite is a substance that exists widely in the surface environment and has an important impact on the environmental behavior of pollutants. Clarifying the migration of NPs requires an in-depth understanding of intrinsic interaction mechanisms of NPs with iron-containing minerals. The interaction process of polystyrene nanoplastics (PSNPs) on the hematite exposed facets was systematically studied by experiments under different conditions, adsorption isotherm curves, Fourier Transform infrared (FTIR) spectroscopy and two-dimensional correlation spectroscopy (2D-COS) analyses. We found that PSNPs were adsorbed on the three exposed faces of hematite ({001}, {012}, and {100}) by electrostatic interaction, respectively, but the capacities for PSNPs were different. Adsorption models were established to explore the preferred interaction surface dependent on the exposed facets, and it was found that {012} surfaces were more favorable for PSNPs adsorption, while {001} surface has better adsorption capacity for PSNPs than {100} surface, which is due to the different density and proportion of hydroxyl groups on the exposed facets of hematite. These findings elucidated the dependence of PSNPs adsorption on the hematite facets, and illustrated t the effect of hematite on the migration of PSNPs in the environment.
Collapse
Affiliation(s)
- Xinran Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Chi Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| |
Collapse
|
10
|
Liu H, Liao X, Ren Y. Effects of additive dosage and coagulation bath pH on amphoteric fluorocarbon special surfactant (FS-50) blend PVDF membranes. CHEMOSPHERE 2022; 287:132212. [PMID: 34547558 DOI: 10.1016/j.chemosphere.2021.132212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/01/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Amphiphilic copolymers containing hydrophilic and hydrophobic blocks represented by surfactants have proven to be more effective for modifying membranes than hydrophilic copolymers. However, studies on the effects of additive and coagulation bath pH on the morphology and properties of surfactant-modified membranes have rarely been reported. Hence, this study aims to investigate the effects of the additive dosage and the coagulation bath pH on the mechanisms of phase inversion and performance improvement of amphoteric fluorocarbon special surfactant (FS-50) blended PVDF membranes. It was observed that the pure water flux increased from 114.68 LMH/bar of the original membrane M0 to 205.02 LMH/bar of the blend membrane M1, and then to 615.88 LMH/bar of the coagulation-bath-regulated membrane MPH9 with a high BSA rejection rate of 90.86%, showing a two-stage jump. The addition of FS-50 promoted the instantaneous phase inversion of the membrane, allowing the blend membrane to exhibit a higher proportion of pore characteristics and stronger permeability. After that, the mechanisms of the membrane phase inversion process affected by the coagulation bath pH were interpreted according to the pH-response characteristics of FS-50 in terms of charge repulsion effect and compressed double-electron layer effect. Furthermore, the cross-sectional morphology and the surface structure of the membrane prepared in acidic and alkaline coagulation baths were significantly affected by the pH of the coagulation bath, exhibiting different features. For one, the porosity of the membranes gradually decreased as the acidity and alkalinity of the coagulation bath increased, and the membrane MPH9 exhibited both maximum surface and overall porosity. For another, the coagulation bath pH did not negatively affect the contact angle, surface roughness and tensile strength of the membranes. Overall, adjusting the dosage of FS-50 and the pH of the coagulation bath is a promising approach to greatly enhance membrane performance.
Collapse
Affiliation(s)
- Hailong Liu
- School of Environmental Science and Resources, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, China.
| | - Xiangjun Liao
- School of Environmental Science and Resources, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, China
| | - Yuxia Ren
- School of Environmental Science and Resources, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, China
| |
Collapse
|
11
|
Badetti E, Brunelli A, Basei G, Gallego-Urrea JA, Stoll S, Walch H, Praetorius A, von der Kammer F, Marcomini A. Novel multimethod approach for the determination of the colloidal stability of nanomaterials in complex environmental mixtures using a global stability index: TiO 2 as case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149607. [PMID: 34425449 DOI: 10.1016/j.scitotenv.2021.149607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/16/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
A systematic study on the colloidal behavior of uncoated and polyvinylpyrrolidone (PVP) coated TiO2 engineered nanomaterials (ENMs) in simulated aqueous media is herein reported, in which conditions representative for natural waters (pH, presence of divalent electrolytes (i.e. Ca2+/Mg2+ and SO42-), of natural organic matter (NOM) and of suspended particulate matter (SPM)) were systematically varied. The colloidal stability of the different dispersions was investigated by means of Dynamic and Electrophoretic Light Scattering (DLS and ELS) and Centrifugal Separation Analysis (CSA), and a global stability index based on these three techniques was developed. The index allows to quantitatively classify the nano-based dispersions according to their colloidal stability affected by the different parameters studied. This multimethod approach clearly identifies inorganic SPM followed by divalent electrolytes as the main natural components destabilizing TiO2 ENMs upon entering in simulated natural waters, while it highlights a moderate stabilization induced by NOM, depending mainly on pH. Moreover, the PVP coating was found to attenuate the influence of these parameters on the colloidal stability. The obtained results show how the global stability index developed is influenced by the complexity of the system, suggesting the importance of combining the information gathered from all the techniques employed to better elucidate the fate and behavior of ENMs in natural surface waters.
Collapse
Affiliation(s)
- Elena Badetti
- DAIS Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30170 Venice Mestre, Italy.
| | - Andrea Brunelli
- DAIS Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30170 Venice Mestre, Italy
| | - Gianpietro Basei
- DAIS Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30170 Venice Mestre, Italy; GreenDecision Srl, Via delle industrie 21/8, 30175 Venice, Italy
| | - Julián A Gallego-Urrea
- Department of Marine Sciences, Kristineberg Marine Research Station, University of Gothenburg, Gothenburg, Kristineberg 566, 451 78 Fiskebäckskil, Sweden.
| | - Serge Stoll
- Group of Environmental Physical Chemistry, Department F.-A. Forel for Environmental and Aquatic Sciences, Institute of Environmental Science, University of Geneva, Uni Carl Vogt, 66 boulevard Carl-Vogt, Geneva CH-1211, Switzerland
| | - Helene Walch
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Althanstr, 14, UZA II, 1090 Vienna, Austria
| | - Antonia Praetorius
- Department of Ecosystem & Landscape Dynamics, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Frank von der Kammer
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Althanstr, 14, UZA II, 1090 Vienna, Austria
| | - Antonio Marcomini
- DAIS Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30170 Venice Mestre, Italy
| |
Collapse
|
12
|
Stenberg S, Forsman J. Overcharging and Free Energy Barriers for Equally Charged Surfaces Immersed in Salt Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14360-14368. [PMID: 34847668 PMCID: PMC8675215 DOI: 10.1021/acs.langmuir.1c02268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The stability of dispersions containing charged particles may obviously be regulated by salt. In some systems, the effective charge, as measured by the potential some small distance away from the particles, can have a sign opposite to the bare surface charge. If charge reversal takes place, there is typically a salt concentration regime within which colloidal stability increases with added salt. These experimental findings on dispersions have been corroborated by atomic force microscopy investigations, where an attraction is found at short separations. This attraction is stronger than expected from standard DLVO theory, and there has been considerable debate concerning its origin. In this work, we use simple coarse-grained models of these systems, where the bare surfaces carry a uniform charge density, and ion-specific adsorption is absent. Our hypothesis is that these experimental observations can be explained by such a simplistic pure Coulomb based model. Our approach entails grand canonical Metropolis Monte Carlo (MC) simulations as well as correlation-corrected Poisson-Boltzmann (cPB) calculations. In the former case, all ions have a common size, while the cPB utilizes a point-like model. We devote significant attention on apparent surface charge densities and interactions between large flat model surfaces immersed in either a 2:1 salt or a 3:1 salt. In contrast to most of the previous theoretical efforts in this area, we mainly focus on the weak long-ranged repulsion and its connection to an effective surface charge. We find a charge reversal and a concomitant development of a free energy barrier for both salts. The experimentally observed nonmonotonic dependence of colloidal stability on the salt concentration is reproduced using MC simulations as well as cPB calculations. A strong attraction is observed at short range for all investigated cases. We argue that in our model, all non-DLVO aspects can be traced to ion-ion correlations.
Collapse
|
13
|
Katana B, Takács D, Szerlauth A, Sáringer S, Varga G, Jamnik A, Bobbink FD, Dyson PJ, Szilagyi I. Aggregation of Halloysite Nanotubes in the Presence of Multivalent Ions and Ionic Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11869-11879. [PMID: 34601883 PMCID: PMC8515846 DOI: 10.1021/acs.langmuir.1c01949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Colloidal stability was investigated in two types of particle systems, namely, with bare (h-HNT) and polyimidazolium-functionalized (h-HNT-IP-2) alkali-treated halloysite nanotubes in solutions of metal salts and ionic liquids (ILs). The valence of the metal ions and the number of carbon atoms in the hydrocarbon chain of the IL cations (1-methylimidazolium (MIM+), 1-ethyl-3-methylimidazolium (EMIM+), 1-butyl-3-methylimidazolium (BMIM+), and 1-hexyl-3-methylimidazolium (HMIM+)) were altered in the measurements. For the bare h-HNT with a negative surface charge, multivalent counterions destabilized the dispersions at low values of critical coagulation concentration (CCC) in line with the Schulze-Hardy rule. In the presence of ILs, significant adsorption of HMIM+ took place on the h-HNT surface, leading to charge neutralization and overcharging at appropriate concentrations. A weaker affinity was observed for MIM+, EMIM+, and BMIM+, while they adsorbed on the particles to different extents. The order HMIM+ < BMIM+ < EMIM+ < MIM+ was obtained for the CCCs of h-HNT, indicating that HMIM+ was the most effective in the destabilization of the colloids. For h-HNT-IP-2 with a positive surface charge, no specific interaction was observed between the salt and the IL constituent cations and the particles, i.e., the determined charge and aggregation parameters were the same within experimental error, irrespective of the type of co-ions. These results clearly indicate the relevance of ion adsorption in the colloidal stability of the nanotubes and thus provide useful information for further design of processable h-HNT dispersions.
Collapse
Affiliation(s)
- Bojana Katana
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Dóra Takács
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Adél Szerlauth
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Szilárd Sáringer
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Gábor Varga
- Material
and Solution Structure Research Group, Department of Organic Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Andrej Jamnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Felix D. Bobbink
- Institute
of Chemical Sciences and Engineering, École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Paul J. Dyson
- Institute
of Chemical Sciences and Engineering, École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Istvan Szilagyi
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
14
|
Rakshit AK, Naskar B, Moulik SP. Performance of modified Schulze-Hardy rule on the stability of nano, micro, and macro colloidal dispersions: A comprehensive account. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Lugoloobi I, Maniriho H, Jia L, Namulinda T, Shi X, Zhao Y. Cellulose nanocrystals in cancer diagnostics and treatment. J Control Release 2021; 336:207-232. [PMID: 34102221 DOI: 10.1016/j.jconrel.2021.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
Cancer is currently a major threat to public health, being among the principal causes of death to the global population. With carcinogenesis mechanisms, cancer invasion, and metastasis remaining blurred, cancer diagnosis and novel drug delivery approaches should be developed urgently to enable management and treatment. A dream break-through would be a non-invasive instantaneous monitoring of cancer initiation and progression to fast-track diagnosis for timely specialist treatment decisions. These innovations would enhance the established treatment protocols, unlimited by evasive biological complexities during tumorigenesis. It is therefore contingent that emerging and future scientific technologies be equally biased towards such innovations by exploiting the apparent properties of new developments and materials especially nanomaterials. CNCs as nanomaterials have undisputable physical and excellent biological properties that enhanced their interest as biomedical materials. This article therefore highlights CNCs utility in cancer diagnosis and therapy. Their extraction, properties, modification, in-vivo/in-vitro medical applications, biocompatibility, challenges and future perspectives are precisely discussed.
Collapse
Affiliation(s)
- Ishaq Lugoloobi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.
| | - Hillary Maniriho
- Department of Biochemistry and Human Molecular Genetics, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Liang Jia
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Tabbisa Namulinda
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Yili Zhao
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
16
|
Wei X, Pan D, Xu Z, Xian D, Li X, Tan Z, Liu C, Wu W. Colloidal stability and correlated migration of illite in the aquatic environment: The roles of pH, temperature, multiple cations and humic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144174. [PMID: 33453530 DOI: 10.1016/j.scitotenv.2020.144174] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
The mobility and environmental risk of colloids and associated pollutants are dependent on their dispersion stability under various conditions. In this work, the stability and correlated migration of illite colloids (IC) were systematically investigated over a wide range of aquatic chemistry conditions. The results showed that IC was aggregation favorable at low pH, low temperature and high ionic strength. The critical coagulation concentration (CCC) of IC increased exponentially with increasing values of r/Z3, following the Schulze-Hardy and Hofmeister series. Humic acid (HA) greatly mitigated colloid aggregation since the attachment of HA on IC surface increased the steric hindrance and electrostatic potential, and the enhancement of stability was linearly correlated with the HA concentration. The Derjaguin-Landau-Verwey-Overbeek (DLVO) model revealed that the interaction force deriving from van der Waals forces and electrostatic double-layer energy evolved as the aquatic chemistry varied, and the reduction in repulsion force between particles facilitated the colloid collision and then aggregation. The migration of IC in the porous sand column was highly correlated with the dispersion stability and filtration effect, the agglomerated colloids were redispersed and released when conditions favored dispersion. The illite colloids acted as efficient carriers for Eu(III) transport. These findings are essential for improving the understanding of the geological fate of environmental colloids and associated radionuclides.
Collapse
Affiliation(s)
- Xiaoyan Wei
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Duoqiang Pan
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Zhen Xu
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Dongfan Xian
- Beijing National Laboratory for Molecular Sciences, Fundamental Science Laboratory on Radiochemistry and Radiation Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaolong Li
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| | - Zhaoyi Tan
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| | - Chunli Liu
- Beijing National Laboratory for Molecular Sciences, Fundamental Science Laboratory on Radiochemistry and Radiation Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wangsuo Wu
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
17
|
Suyama K, Mawatari M, Tatsubo D, Maeda I, Nose T. Simple Regulation of the Self-Assembling Ability by Multimerization of Elastin-Derived Peptide (FPGVG) n Using Nitrilotriacetic Acid as a Building Block. ACS OMEGA 2021; 6:5705-5716. [PMID: 33681610 PMCID: PMC7931394 DOI: 10.1021/acsomega.0c06140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Elastin comprises hydrophobic repetitive sequences, such as Val-Pro-Gly-Val-Gly, which are thought to be important for the temperature-dependent reversible self-association (coacervation). Elastin and elastin-like peptides (ELPs), owing to their characteristics, are expected to be applied as base materials for the development of new molecular tools, such as drug-delivery system carrier and metal-scavenging agents. Recently, several studies have been reported on the dendritic or branching ELP analogues. Although the topological difference of the branched ELPs compared to their linear counterparts may lead to useful properties in biomaterials, the available information regarding the effect of branching on molecular architecture and thermoresponsive behavior of ELPs is scarce. To obtain further insight into the thermoresponsive behavior of branched ELPs, novel ELPs, such as nitrilotriacetic acid (NTA)-(FPGVG) n conjugates, that is, (NTA)-Fn analogues possessing 1-3 (FPGVG) n (n = 3, 5) molecule(s), were synthesized and investigated for their coacervation ability. Turbidity measurement of the synthesized peptide analogues revealed that (NTA)-Fn analogues showed strong coacervation ability with various strengths. The transition temperature of NTA-Fn analogues exponentially decreased with increasing number of residues. In the circular dichroism measurements, trimerization did not alter the secondary structure of each peptide chain of the NTA-Fn analogue. In addition, it was also revealed that the NTA-Fn analogue possesses one peptide chain that could be utilized as metal-scavenging agents. The study findings indicated that multimerization of short ELPs via NTA is a useful and powerful strategy to obtain thermoresponsive molecules.
Collapse
Affiliation(s)
- Keitaro Suyama
- Laboratory
of Biomolecular Chemistry, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Mika Mawatari
- Department
of Chemistry, Faculty and Graduate School
of Science, Fukuoka 819-0395, Japan
| | - Daiki Tatsubo
- Department
of Chemistry, Faculty and Graduate School
of Science, Fukuoka 819-0395, Japan
| | - Iori Maeda
- Department
of Physics and Information Technology, Kyushu
Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Takeru Nose
- Laboratory
of Biomolecular Chemistry, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
- Department
of Chemistry, Faculty and Graduate School
of Science, Fukuoka 819-0395, Japan
| |
Collapse
|
18
|
Wang H, Han X, Chen Y, Guo W, Zheng W, Cai N, Guo Q, Zhao X, Wu F. Effects of F -, Cl -, Br -, NO 3-, and SO 42- on the colloidal stability of Fe 3O 4 nanoparticles in the aqueous phase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143962. [PMID: 33316533 DOI: 10.1016/j.scitotenv.2020.143962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
The effect of ions on the colloidal behavior of magnetic nanoparticles (MNPs) is an important factor for determining the dispersibility of MNPs. Compared with the effects of cations and organic matter, the effect of anions on MNPs has rarely been studied. Hence, in this study, the effect of anions on the aggregation of Fe3O4 MNPs in the aqueous phase was investigated using F-, Cl-, Br-, NO3-, and SO42-. The results indicated that the effect of anions on the colloidal behavior of the MNPs varied widely depending on their valence state, concentration, hydration ability, solution pH, and the magnetic force between the MNPs. Specifically, at pH 5.0, the anions were mainly adsorbed on the particle surface by electrostatic attraction, decreasing the electrostatic repulsion between the MNPs and causing an aggregation of the particles in the order of SO42- > F- > Br- > Cl- ≈ NO3-. At pH 9.0, anions strengthened the suspension of the MNPs at low ionic strength (IS) (≤5); however, with increasing IS, an aggregation of the MNPs in the following order was formed: NO3- > Cl- > Br- ≥ F- > SO42-. This was a result of the combined effects of the IS of solution, hydrability, and polarizability of the anions. Furthermore, the Derjaguin-Landau-Vervey-Overbeek (DLVO) theory can explain the colloidal behavior of MNPs in the presence of magnetic forces, but it fails to differentiate the MNP behaviors between monovalent anions because the effects of ionic hydrability and polarizability are not considered. Distinctively, the secondary minimum between the MNPs particles were induced via magnetic attraction and played a critical role in adjusting the colloidal stability of the MNPs. Overall, these results indicate that specific ionic effects and magnetic attraction are important for interpreting the colloidal stability of MNPs in aqueous conditions.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Xuejiao Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yao Chen
- South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Wenjing Guo
- Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Wenli Zheng
- South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Nan Cai
- South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Qingwei Guo
- South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510530, China.
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
19
|
Hegedűs T, Takács D, Vásárhelyi L, Szilágyi I, Kónya Z. Specific Ion Effects on Aggregation and Charging Properties of Boron Nitride Nanospheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2466-2475. [PMID: 33555897 PMCID: PMC8023703 DOI: 10.1021/acs.langmuir.0c03533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/23/2021] [Indexed: 02/08/2023]
Abstract
The charging and aggregation properties of boron nitride nanospheres (BNNSs) were investigated in the presence of electrolytes of different compositions and valences in aqueous suspensions. The influence of mono- and multivalent cations (counterions) and anions (coions) on the colloidal stability of the negatively charged particles was studied over a wide range of salt concentrations. For monovalent ions, similar trends were determined in the stability and charging of the particles irrespective of the salt composition, i.e., no ion-specific effects were observed. Once multivalent counterions were involved, the critical coagulation concentrations (CCCs) decreased with the valence in line with the direct Schulze-Hardy rule. The dependence indicated an intermediate charge density for BNNSs. The influence of the coions on the CCCs was weaker and the destabilization ability followed the inverse Schulze-Hardy rule. The predominant interparticle forces were identified as electrical double-layer repulsion and van der Waals attraction. These findings offer useful information to design stable BNNS dispersions in various applications, where mono- and multivalent electrolytes or their mixtures are present in the samples.
Collapse
Affiliation(s)
- Tímea Hegedűs
- Department
of Applied and Environmental Chemistry, University of Szeged, Szeged H-6720, Hungary
| | - Dóra Takács
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Lívia Vásárhelyi
- Department
of Applied and Environmental Chemistry, University of Szeged, Szeged H-6720, Hungary
| | - István Szilágyi
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Zoltán Kónya
- Department
of Applied and Environmental Chemistry, University of Szeged, Szeged H-6720, Hungary
- MTA-SZTE
Reaction Kinetics and Surface Chemistry Research Group, Szeged H-6720, Hungary
| |
Collapse
|
20
|
Colloidal stability of cellulose nanocrystals in aqueous solutions containing monovalent, divalent, and trivalent inorganic salts. J Colloid Interface Sci 2021; 584:456-463. [DOI: 10.1016/j.jcis.2020.09.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
|
21
|
Katana B, Takács D, Csapó E, Szabó T, Jamnik A, Szilagyi I. Ion Specific Effects on the Stability of Halloysite Nanotube Colloids-Inorganic Salts versus Ionic Liquids. J Phys Chem B 2020; 124:9757-9765. [PMID: 33076658 PMCID: PMC7660744 DOI: 10.1021/acs.jpcb.0c07885] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/09/2020] [Indexed: 11/30/2022]
Abstract
Charging and aggregation processes were studied in aqueous dispersions of halloysite nanotubes (HNTs) in the presence of monovalent inorganic electrolytes and ionic liquid (IL) constituents. The same type of co-ion (same sign of charge as HNT) was used in all systems, while the type of counterions (opposite sign of charge as HNT) was systematically varied. The affinity of the inorganic cations to the HNT surface influenced their destabilizing power leading to an increase in the critical coagulation concentration (CCC) of HNT dispersions in the Cs+ < K+ < Na+ order. This trend agrees with the classical Hofmeister series for negatively charged hydrophobic surfaces. For the IL cations, the CCCs increased in the order BMPY+ < BMPIP+ < BMPYR+ < BMIM+. An unexpectedly strong adsorption of BMPY+ cations on the HNT surface was observed giving rise to charge neutralization and reversal of the oppositely charged outer surface of HNT. The direct Hofmeister series was extended with these IL cations. The main aggregation mechanism was rationalized within the classical theory developed by Derjaguin, Landau, Verwey, and Overbeek, while ion specific effects resulted in remarkable variation in the CCC values. The results unambiguously proved that the hydration level of the surface and the counterions plays a crucial role in the formation of the ionic composition at the solid-liquid interface and consequently, in the colloidal stability of the HNT particles in both inorganic salt and IL solutions.
Collapse
Affiliation(s)
- Bojana Katana
- MTA-SZTE
Lendület Biocolloids Research Group and Interdisciplinary Excellence Center,
Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Dóra Takács
- MTA-SZTE
Lendület Biocolloids Research Group and Interdisciplinary Excellence Center,
Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Edit Csapó
- MTA-SZTE
Lendület Biocolloids Research Group and Interdisciplinary Excellence Center,
Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Tamás Szabó
- MTA-SZTE
Lendület Biocolloids Research Group and Interdisciplinary Excellence Center,
Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Andrej Jamnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Istvan Szilagyi
- MTA-SZTE
Lendület Biocolloids Research Group and Interdisciplinary Excellence Center,
Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
22
|
Ong GMC, Gallegos A, Wu J. Modeling Surface Charge Regulation of Colloidal Particles in Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11918-11928. [PMID: 32921060 DOI: 10.1021/acs.langmuir.0c02000] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Colloidal particles are mostly charged in an aqueous solution because of the protonation or deprotonation of ionizable groups on the surface. The surface charge density reflects a complex interplay of ion distributions within the electric double layer and the surface reaction equilibrium. In this work, we present a coarse-grained model to describe the charge regulation of various colloidal systems by an explicit consideration of the inhomogeneous ion distributions and surface reactions. With the primitive model for aqueous solutions and equilibrium constants for surface reactions as the inputs, the theoretical model is able to make quantitative predictions of the surface-charge densities and zeta potentials for diverse colloidal particles over a wide range of pH and ionic conditions. By accounting for the ionic size effects and electrostatic correlations, our model is applicable to systems with multivalent ions that exhibit charge inversion and provides a faithful description of the interfacial properties without evoking the empirical Stern capacitance or specific ion adsorptions.
Collapse
Affiliation(s)
- Gary M C Ong
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Alejandro Gallegos
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
23
|
The hydration effect of singly charged ions on the electrosurface properties of titanium dioxide aqueous suspensions. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Zhang Y, Luo Y, Guo X, Xia T, Wang T, Jia H, Zhu L. Charge mediated interaction of polystyrene nanoplastic (PSNP) with minerals in aqueous phase. WATER RESEARCH 2020; 178:115861. [PMID: 32375113 DOI: 10.1016/j.watres.2020.115861] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
A large number of plastic products potentially become smaller particles, including nanoplastics, under multiple actions in the environment. The interactions between nanoplastic particles and constituents in the environment, such as minerals, would greatly affect the transport, fate and toxic effects of nanoplastics. In this study, the interactions of polystyrene nanoplastic (PSNP) with four typical minerals, including goethite, magnetite, kaolinite and montmorillonite, in aqueous phase were investigated. The stability of PSNP colloidal suspension decreased in the presence of the positively charged goethite or magnetite, while it was not affected by the negatively charged montmorillonite and kaolinite, suggesting that there was a strong electrostatic attraction between PSNP and the two iron oxides. Incubation of PSNP with other three metal oxides with different surface charges, MnO2, Al2O3 and SiO2, confirmed the importance of electrostatic interaction in the stability of PSNP suspension. The transmission electron microscopy (TEM) analysis and batch adsorption experiments indicated that PSNP was effectively adsorbed on goethite or magnetite due to the strong electrostatic attraction between them. The Fourier transform infrared spectra (FTIR) and two-dimensional correlation spectroscopy (2D-COS) analyses indicated that there was strong hydrogen bonding between the -OH (γ-FeOOH) of goethite and PSNP, contributing to the higher adsorption of PSNP on goethite than magnetite. These findings shed light on the interactions of PSNP with mineral surfaces, and potential fate of PSNP under natural conditions in the water environment.
Collapse
Affiliation(s)
- Yangyang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuanyuan Luo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Tianjiao Xia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
25
|
A Simple Method to Determine Critical Coagulation Concentration from Electrophoretic Mobility. COLLOIDS AND INTERFACES 2020. [DOI: 10.3390/colloids4020020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Critical coagulation concentration (CCC) is a key parameter of particle dispersions, since it provides the threshold limit of electrolyte concentrations, above which the dispersions are destabilized due to rapid particle aggregation. A computational method is proposed to predict CCC values using solely electrophoretic mobility data without the need to measure aggregation rates of the particles. The model relies on the DLVO theory; contributions from repulsive double-layer forces and attractive van der Waals forces are included. Comparison between the calculated and previously reported experimental CCC data for the same particles shows that the method performs well in the presence of mono and multivalent electrolytes provided DLVO interparticle forces are dominant. The method is validated for particles of various compositions, shapes, and sizes.
Collapse
|
26
|
Kang B, Tang H, Zhao Z, Song S. Hofmeister Series: Insights of Ion Specificity from Amphiphilic Assembly and Interface Property. ACS OMEGA 2020; 5:6229-6239. [PMID: 32258857 PMCID: PMC7114165 DOI: 10.1021/acsomega.0c00237] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/13/2020] [Indexed: 05/04/2023]
Abstract
Hofmeister series (HS), ion specific effect, or lyotropic sequence acts as a pivotal part in a number of biological and physicochemical phenomena, e.g., changing the solubility of hydrophobic solutes, the cloud points of polymers and nonionic surfactants, the activities of various enzymes, the action of ions on an ion-channel, and the surface tension of electrolyte solutions, etc. This review focused on how ion specificity influences the critical micelle concentration (CMC) and how the thermoresponsive behavior of surfactants, and the dynamic transition of the aggregate, controls the aggregate transition and gel formation and tunes the properties of air/water interfaces (Langmuir monolayer and interfacial free energy). Recent progress of the ion specific effect in bulk phase and at interfaces in amphiphilic systems and gels is summarized. Applications and a molecular level theoretical explanation of HS are discussed comprehensively. This review is aimed to supply a fresh and comprehensive understanding of Hofmiester phenomena in surfactants, polymers, colloids, and interface science and to provide a guideline to design the microstructures and templates for preparation of nanomaterials.
Collapse
Affiliation(s)
- Beibei Kang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Huicheng Tang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Zengdian Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Shasha Song
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| |
Collapse
|
27
|
Pavlovic M, Plucinski A, Zhang J, Antonietti M, Zeininger L, Schmidt BVKJ. Cascade Kinetics in an Enzyme-Loaded Aqueous Two-Phase System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1401-1408. [PMID: 31977224 PMCID: PMC7307955 DOI: 10.1021/acs.langmuir.0c00186] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Indexed: 05/20/2023]
Abstract
Macromolecular crowding plays a critical role in the kinetics of enzymatic reactions. Dynamic compartmentalization of biological components in living cells due to liquid-liquid phase separation represents an important cell regulatory mechanism that can increase enzyme concentration locally and influence the diffusion of substrates. In the present study, we probed partitioning of two enzymes (horseradish-peroxidase and urate-oxidase) in a poly(ethylene glycol)-dextran aqueous two-phase system (ATPS) as a function of salt concentration and ion position in the Hofmeister series. Moreover, we investigated enzymatic cascade reactions and their kinetics within the ATPS, which revealed a strong influence of the ion hydration stemming from the background electrolyte on the partitioning coefficients of proteins following the Hofmeister series. As a result, we were able to realize cross-partitioning of two enzymes because of different protein net charges at a chosen pH. Our study reveals a strong dependency of the enzyme activity on the substrate type and crowding agent interaction on the final kinetics of enzymatic reactions in the ATPS and therefore provides substantial implications en route toward dynamic regulation of reactivity in synthetic protocells.
Collapse
Affiliation(s)
- Marko Pavlovic
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Alexander Plucinski
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- School
of Chemistry, University of Glasgow, Joseph Black Building, G128QQ Glasgow, U.K.
| | - Jianrui Zhang
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Markus Antonietti
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Lukas Zeininger
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- E-mail: (L.Z.)
| | - Bernhard V. K. J. Schmidt
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- School
of Chemistry, University of Glasgow, Joseph Black Building, G128QQ Glasgow, U.K.
- E-mail: (B.V.K.J.S.)
| |
Collapse
|
28
|
Kosmulski M. The pH dependent surface charging and points of zero charge. VIII. Update. Adv Colloid Interface Sci 2020; 275:102064. [PMID: 31757389 DOI: 10.1016/j.cis.2019.102064] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/28/2022]
Abstract
A critical review of the points of zero charge (PZC) obtained by potentiometric titration and of isoelectric points (IEP) obtained by electrokinetic measurements. The results from the recent literature are presented with experimental details (temperature, method, type of apparatus, etc.), and they are compared with the zero points of similar materials reported in older publications. Most studies of PZC and IEP reported in the recent papers were carried out for metal oxides and hydroxides, especially alumina, iron oxides, and titania, and the results are consistent with the PZC and IEP of similar materials reported in older literature, and summarized in previous reviews by the same author. Relatively few studies were carried out with less common materials, and IEP of (nominally) VO2 and BN have been reported for the 1st time.
Collapse
|
29
|
Babakhani P, Bridge J, Phenrat T, Fagerlund F, Doong RA, Whittle KR. Comparison of a new mass-concentration, chain-reaction model with the population-balance model for early- and late-stage aggregation of shattered graphene oxide nanoparticles. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Liu S, Hu Y, Xia J, Fang S, Duan M. In Situ Measurement of Depletion Caused by SDBS Micelles on the Surface of Silica Particles Using Optical Tweezers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13536-13542. [PMID: 31574218 DOI: 10.1021/acs.langmuir.9b02041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dual-trap optical tweezers have been used to directly measure the interaction forces between two silica particles upon controlling the concentration of the ionic surfactant sodium dodecylbenzenesulfonate (SDBS). By capturing two silica particles in one spot optical trap and one linear optical trap and controlling the linear trap to bring one particle to approach another sufficiently closer, the interaction forces between these two particles can be measured as the separation distance changes. Results showed that with increasing concentrations of SDBS, the interaction force between the two silica particles emerges at closer surface distance between two silica particles. Only repulsive force exists between silica particles below the critical micelle concentration (cmc) of SDBS and it could be well-fitted using the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. However, the depletion attraction force appears above the cmc of SDBS which is induced by the generation of SDBS micelles. By in situ measurement of the interaction force between two silica particles in the presence of different concentrations of SDBS, the depletion force can be quantitatively calculated.
Collapse
Affiliation(s)
- Shuai Liu
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu , Sichuan 610500 , P. R. China
| | - Yue Hu
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu , Sichuan 610500 , P. R. China
| | - Jing Xia
- School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Shenwen Fang
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu , Sichuan 610500 , P. R. China
| | - Ming Duan
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu , Sichuan 610500 , P. R. China
| |
Collapse
|
31
|
Rouster P, Dondelinger M, Galleni M, Nysten B, Jonas AM, Glinel K. Layer-by-layer assembly of enzyme-loaded halloysite nanotubes for the fabrication of highly active coatings. Colloids Surf B Biointerfaces 2019; 178:508-514. [DOI: 10.1016/j.colsurfb.2019.03.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/18/2019] [Accepted: 03/20/2019] [Indexed: 12/19/2022]
|
32
|
Sáringer S, Rouster P, Szilágyi I. Regulation of the Stability of Titania Nanosheet Dispersions with Oppositely and Like-Charged Polyelectrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4986-4994. [PMID: 30888825 DOI: 10.1021/acs.langmuir.9b00242] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Charging and aggregation processes of titania nanosheets (TNS) were extensively studied in the presence of oppositely charged or like-charged polyelectrolytes in aqueous dispersions. The surface charge of the TNS was systematically varied by the pH; therefore, positive nanosheets were obtained at pH 4 and negative ones at pH 10. Strong adsorption of poly(styrene sulfonate) (PSS) of high negative line charge density on the TNS was observed at pH 4, leading to charge neutralization and reversal of the original sign of charge of the nanosheets. The adsorption of like-charged poly(diallyldimethylammonium chloride) (PDADMAC) was also feasible through a hydrophobic interaction. The predominating interparticle forces were mainly of the DLVO-type, but additional patch-charge attraction also took place in the case of PSS at low surface coverage. The TNS was found to be hydrophilic at pH 10 and no adsorption of like-charged PSS was possible because of strong electrostatic repulsion between the polyelectrolyte and the surface. The PDADMAC showed high affinity to the oppositely charged TNS surface in alkaline dispersions, giving rise to neutral and positively charged nanosheets at appropriate polyelectrolyte doses. Formation of a saturated PDADMAC layer on the TNS led to high resistance against salt-induced aggregation through the electrosteric stabilization mechanism. These results shed light on the importance of polyelectrolyte concentration, ionic strength, and charge balance on the colloidal stability of TNS, which is especially important in applications, where the nanosheets are dispersed in complex solution containing polymeric compounds and electrolytes.
Collapse
Affiliation(s)
| | - Paul Rouster
- Institute of Condensed Matter and Nanosciences-Bio and Soft Matter , Université Catholique de Louvain , B-1348 Louvain-la-Neuve , Belgium
| | | |
Collapse
|
33
|
Zhang J, Zhou D, Dong S, Ren N. Respective construction of Type-II and direct Z-scheme heterostructure by selectively depositing CdS on {001} and {101} facets of TiO 2 nanosheet with CDots modification: A comprehensive comparison. JOURNAL OF HAZARDOUS MATERIALS 2019; 366:311-320. [PMID: 30530023 DOI: 10.1016/j.jhazmat.2018.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Directional deposition has always been a focus issue in the construction of specific heterostructure. Herein, for the first time, we have demonstrated that the CdS could be selectively deposited on {001} or {101} facets of TiO2 nanosheet, and two different charge transfer processes were formed. First, the selective deposition of CdS on {001} facets of TiO2 nanosheet ({001}TiO2/CdS) would form the Type-II heterostructure, which seriously weakened the redox ability of {001}TiO2/CdS and directly resulted in the low photocatalytic performance (4-Chlorophenol (4-CP), 61.92% in 40 min) and serious photocorrosion of CdS. In contrary, the selective deposition of CdS on {101} facets of TiO2 nanosheet ({101}TiO2/CdS) could construct direct Z-scheme heterostructure with significantly increased photocatalytic 4-CP degradation efficiency (96.12%), much higher than pristine TiO2 nanosheet (87.21%). The hybrids were further modified by carbon nanodots (CDots) ({101}TiO2/CdS/CDots) to enhance photocatalytic performance (99.84%). The obtained direct Z-scheme {101}TiO2/CdS/CDots showed excellent stability and anti-photocorrosion ability. The synergistic effect between TiO2 nanosheet, CdS and CDots was expounded through characterization analyses, and the photocatalytic reaction mechanism was proposed in detail. Toxicity assessment authenticated good biocompatibility and low cytotoxicity of {101}TiO2/CdS/CDots. Our discovery was expected to drive great advances in the use of TiO2 nanosheet for environmental remediation.
Collapse
Affiliation(s)
- Jun Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Dandan Zhou
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Shuangshi Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
34
|
Expansion and shrinkage of the electrical double layer in charge-asymmetric electrolytes: A non-linear Poisson-Boltzmann description. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Zhu L, Li Z, Tian R, Li H. Specific ion effects of divalent cations on the aggregation of positively charged goethite nanoparticles in aqueous suspension. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.12.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Farrokhbin M, Stojimirović B, Galli M, Khajeh Aminian M, Hallez Y, Trefalt G. Surfactant mediated particle aggregation in nonpolar solvents. Phys Chem Chem Phys 2019; 21:18866-18876. [DOI: 10.1039/c9cp01985e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aggregation behavior of particles in nonpolar media is studied with time-resolved light scattering.
Collapse
Affiliation(s)
- Mojtaba Farrokhbin
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | - Biljana Stojimirović
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | - Marco Galli
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | | | - Yannick Hallez
- Laboratoire de Génie Chimique
- Université de Toulouse
- CNRS
- INPT
- UPS
| | - Gregor Trefalt
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| |
Collapse
|
37
|
Mostowtt T, Munoz J, McCord B. An evaluation of monovalent, divalent, and trivalent cations as aggregating agents for surface enhanced Raman spectroscopy (SERS) analysis of synthetic cannabinoids. Analyst 2019; 144:6404-6414. [DOI: 10.1039/c9an01309a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monovalent, divalent and trivalent chloride, sulfate and nitrate salts were examined to determine the critical coagulation concentration (CCC) for each salt and its corresponding effect on detection limits for SERS analysis of synthetic cannabinoids.
Collapse
Affiliation(s)
| | - Jonathan Munoz
- Department of Chemistry
- Florida International University
- Miami
- USA
| | - Bruce McCord
- Department of Chemistry
- Florida International University
- Miami
- USA
| |
Collapse
|
38
|
Simonsson I, Sögaard C, Rambaran M, Abbas Z. The specific co-ion effect on gelling and surface charging of silica nanoparticles: Speculation or reality? Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.09.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Luo Y, Li H, Gao X, Tian R. Description of colloidal particles aggregation in the presence of Hofmeister effects: on the relationship between ion adsorption energy and particle aggregation activation energy. Phys Chem Chem Phys 2018; 20:22831-22840. [PMID: 30151534 DOI: 10.1039/c8cp04002h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Particle aggregation is acutely affected by Hofmeister effects. Results for aggregation behavior in the presence of Hofmeister effects predicted by the classic DLVO model were not satisfactory. In this study, description of colloidal clay particles aggregation in the presence of Hofmeister effects based on a theoretical relationship between ion adsorption energy and aggregation activation energy was established. Moreover, the validity of the suggested theory was confirmed with the published experimental data on montmorillonite particles aggregation in solutions of LiNO3, KNO3, CsNO3, Mg(NO3)2 and Ca(NO3)2. In the presence of Hofmeister effects, the differences in adsorption ability of the involved five cations were quantitatively characterized by defining an additional Hofmeister energy. We found that the additional Hofmeister energy for Li+, K+, Cs+, Mg2+ and Ca2+ on montmorillonite surface were 0.063, 0.942, 1.864, 0.850 and 2.010-times larger, respectively, than the classic Coulomb interaction energy. Taking these additional Hofmeister energies into account, CCC values for the presence of different cations were theoretically calculated by the suggested theory, and the predicted CCC values matched well with the experimental results. The theoretically predicted CCC values in montmorillonite aggregation for KNO3, CsNO3, Mg(NO3)2 and Ca(NO3)2 were 78.8, 29.9, 6.48, and 3.12 mM, respectively, and the corresponding measured CCC values were 80.3, 27.2, 7.99, and 2.38 mM. Our findings are helpful for further understanding the interactions of nanoparticles with cations and quantitatively answer how ion-surface interactions affect particle interaction processes.
Collapse
Affiliation(s)
- Yaxue Luo
- College of Resources and Environment & Chongqing Key Laboratory of Soil Multi-scale Interfacial Process, Southwest University, Chongqing 400715, China.
| | | | | | | |
Collapse
|
40
|
Effect of Ionic Compounds of Different Valences on the Stability of Titanium Oxide Colloids. COLLOIDS AND INTERFACES 2018. [DOI: 10.3390/colloids2030032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Titanium oxide particles of various morphologies have been prepared for applications of scientific or industrial interest in recent decades. Besides development of novel synthetic routes and solid-state characterization of the obtained particles, colloidal stability of titanium oxide dispersions was the focus of numerous research groups due to the high importance of this topic in applications in heterogeneous systems. The influence of dissolved ionic compounds, including monovalent salts, multivalent ions and polyelectrolytes, on the charging and aggregation behaviour of titanium oxide materials of spherical and elongated structures will be discussed in the present review.
Collapse
|
41
|
Sugimoto T, Cao T, Szilagyi I, Borkovec M, Trefalt G. Aggregation and charging of sulfate and amidine latex particles in the presence of oxyanions. J Colloid Interface Sci 2018; 524:456-464. [DOI: 10.1016/j.jcis.2018.04.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
|
42
|
Moraila-Martínez CL, Guerrero-García GI, Chávez-Páez M, González-Tovar E. An experimental/theoretical method to measure the capacitive compactness of an aqueous electrolyte surrounding a spherical charged colloid. J Chem Phys 2018; 148:154703. [PMID: 29679975 DOI: 10.1063/1.5024553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The capacitive compactness has been introduced very recently [G. I. Guerrero-García et al., Phys. Chem. Chem. Phys. 20, 262-275 (2018)] as a robust and accurate measure to quantify the thickness, or spatial extension, of the electrical double layer next to either an infinite charged electrode or a spherical macroion. We propose here an experimental/theoretical scheme to determine the capacitive compactness of a spherical electrical double layer that relies on the calculation of the electrokinetic charge and the associated mean electrostatic potential at the macroparticle's surface. This is achieved by numerically solving the non-linear Poisson-Boltzmann equation of point ions around a colloidal sphere and matching the corresponding theoretical mobility, predicted by the O'Brien and White theory [J. Chem. Soc., Faraday Trans. 2 74, 1607-1626 (1978)], with experimental measurements of the electrophoretic mobility under the same conditions. This novel method is used to calculate the capacitive compactness of NaCl and CaCl2 electrolytes surrounding a negatively charged polystyrene particle as a function of the salt concentration.
Collapse
Affiliation(s)
- Carmen Lucía Moraila-Martínez
- Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Sinaloa, Av. de las Américas y Blvd. Universitarios, Cd. Universitaria, 80000 Culiacán, Sinaloa, Mexico
| | - Guillermo Iván Guerrero-García
- CONACYT-Instituto de Física de la Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, San Luis Potosí, Mexico
| | - Martín Chávez-Páez
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, San Luis Potosí, Mexico
| | - Enrique González-Tovar
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
43
|
Wang X, Gan Y, Guo S, Ma X, Xu M, Zhang S. Advantages of titanium xerogel over titanium tetrachloride and polytitanium tetrachloride in coagulation: A mechanism analysis. WATER RESEARCH 2018; 132:350-360. [PMID: 29348068 DOI: 10.1016/j.watres.2017.12.081] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/26/2017] [Accepted: 12/30/2017] [Indexed: 06/07/2023]
Abstract
Titanium xerogel coagulant (TXC) worked better than titanium tetrachloride (TC) and polytitanium chloride (PTC) in a wider pH/dose range for the removal of turbidity. However, the underlying mechanisms were not comprehensively understood. In this work, the better coagulation performance of TXC than TC and PTC was systematically elucidated from the following aspects: the physicochemical properties of the three coagulants, the removal of turbidity and organic matter, and the complexation reactions in coagulation. The results demonstrate that the merits of TXC were attributable to the following characteristics: (1) the higher surface charge density/total surface site concentration/isoelectric point of TXC hydrolysates, (2) the formation of TXC hydrolysates with a net-work structure, and (3) the strong binding affinity of TXC hydrolysates to organic matter caused by the bonded acetylacetone in the TXC framework. In short, the hydrolysis behavior of TXC significantly differed from both its precursor, TC, and the prehydrolyzed PTC. The difference in the hydrolysis of TXC was derived from the gelation process, which led to the polymerization of Ti in a way different from prehydrolyzation. The elucidation of the hydrolysis mechanisms is useful for the better application of Ti-based coagulants and may shed light on the preparation of other metal salts.
Collapse
Affiliation(s)
- Xiaomeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, PR China
| | - Yonghai Gan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, PR China
| | - Shang Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, PR China
| | - Xueyan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, PR China
| | - Mengshan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, PR China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, PR China.
| |
Collapse
|
44
|
Effect of ionic strength and salt identity on poly(N-isopropylacrylamide) brush modified colloidal silica particles. J Colloid Interface Sci 2018; 516:153-161. [PMID: 29367066 DOI: 10.1016/j.jcis.2018.01.058] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 11/23/2022]
Abstract
HYPOTHESIS The thermoresponse of poly(N-isopropylacrylamide) stabilised particles is influenced by the presence of salt and is dependent on the concentration, and ions present. The conformation and electrophoretic mobility of core/shell PNIPAM brush modified silica particles is expected to vary as a function of these specific ion effects. EXPERIMENTS The thermoresponse of PNIPAM brush modified silica particles was investigated via dynamic light scattering and electrophoretic mobility measurements between 5 and 45 °C in the presence of 11 different salt solutions. FINDINGS Specific ion effects were observed in the presence of salt solutions for concentrations between 50 and 1000 mM. The temperature response could be mapped to a master curve unlike PNIPAM brush behaviour on planar substrates. The magnitude of brush layer lower critical solution temperature reduction was found to follow the order F- > CH3CO2- > Cl- > NO3- ∼ Br- > I- > SCN- for the potassium series and Na+ > K+ > Cs+ > Li+ ∼ NH4+ for the chloride salts. The electrophoretic mobility of the modified particles in the presence of 100 mM potassium salts increased in magnitude as the brush layer collapsed and also with the chaotropic nature of the anion.
Collapse
|
45
|
Moazzami-Gudarzi M, Adam P, Smith AM, Trefalt G, Szilágyi I, Maroni P, Borkovec M. Interactions between similar and dissimilar charged interfaces in the presence of multivalent anions. Phys Chem Chem Phys 2018; 20:9436-9448. [DOI: 10.1039/c8cp00679b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With direct force measurements, we identify a short-ranged attraction, which acts not only between similar interfaces, but also between dissimilar ones.
Collapse
Affiliation(s)
- Mohsen Moazzami-Gudarzi
- National Graphene Institute
- University of Manchester
- Manchester M13 9PL
- UK
- Department of Inorganic and Analytical Chemistry
| | - Pavel Adam
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | - Alexander M. Smith
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | - Gregor Trefalt
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | - István Szilágyi
- Department of Physical Chemistry and Materials Science
- University of Szeged
- 6720 Szeged
- Hungary
| | - Plinio Maroni
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | - Michal Borkovec
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| |
Collapse
|
46
|
Guerrero-García GI, González-Tovar E, Chávez-Páez M, Kłos J, Lamperski S. Quantifying the thickness of the electrical double layer neutralizing a planar electrode: the capacitive compactness. Phys Chem Chem Phys 2017; 20:262-275. [PMID: 29204593 DOI: 10.1039/c7cp05433e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The spatial extension of the ionic cloud neutralizing a charged colloid or an electrode is usually characterized by the Debye length associated with the supporting charged fluid in the bulk. This spatial length arises naturally in the linear Poisson-Boltzmann theory of point charges, which is the cornerstone of the widely used Derjaguin-Landau-Verwey-Overbeek formalism describing the colloidal stability of electrified macroparticles. By definition, the Debye length is independent of important physical features of charged solutions such as the colloidal charge, electrostatic ion correlations, ionic excluded volume effects, or specific short-range interactions, just to mention a few. In order to include consistently these features to describe more accurately the thickness of the electrical double layer of an inhomogeneous charged fluid in planar geometry, we propose here the use of the capacitive compactness concept as a generalization of the compactness of the spherical electrical double layer around a small macroion (González-Tovar et al., J. Chem. Phys. 2004, 120, 9782). To exemplify the usefulness of the capacitive compactness to characterize strongly coupled charged fluids in external electric fields, we use integral equations theory and Monte Carlo simulations to analyze the electrical properties of a model molten salt near a planar electrode. In particular, we study the electrode's charge neutralization, and the maximum inversion of the net charge per unit area of the electrode-molten salt system as a function of the ionic concentration, and the electrode's charge. The behaviour of the associated capacitive compactness is interpreted in terms of the charge neutralization capacity of the highly correlated charged fluid, which evidences a shrinking/expansion of the electrical double layer at a microscopic level. The capacitive compactness and its first two derivatives are expressed in terms of experimentally measurable macroscopic properties such as the differential and integral capacity, the electrode's surface charge density, and the mean electrostatic potential at the electrode's surface.
Collapse
Affiliation(s)
| | - Enrique González-Tovar
- Instituto de Física de la Universidad Autónoma de San Luis Potosí
- 78000 San Luis Potosí
- Mexico
| | - Martín Chávez-Páez
- Instituto de Física de la Universidad Autónoma de San Luis Potosí
- 78000 San Luis Potosí
- Mexico
| | - Jacek Kłos
- Faculty of Chemistry
- Adam Mickiewicz University in Poznań
- 61-614 Poznań
- Poland
| | | |
Collapse
|