1
|
Li Y, Zhang H, Yang F, Zhu D, Chen S, Wang Z, Wei Z, Yang Z, Jia J, Zhang Y, Wang D, Ma M, Kang X. Mechanisms and therapeutic potential of disulphidptosis in cancer. Cell Prolif 2025; 58:e13752. [PMID: 39354653 DOI: 10.1111/cpr.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/30/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024] Open
Abstract
SLC7A11 plays a pivotal role in tumour development by facilitating cystine import to enhance glutathione synthesis and counteract oxidative stress. Disulphidptosis, an emerging form of cell death observed in cells with high expression of SLC7A11 under glucose deprivation, is regulated through reduction-oxidation reactions and disulphide bond formation. This process leads to contraction and collapse of the F-actin cytoskeleton from the plasma membrane, ultimately resulting in cellular demise. Compared to other forms of cell death, disulphidptosis exhibits distinctive characteristics and regulatory mechanisms. This mechanism provides novel insights and innovative strategies for cancer treatment while also inspiring potential therapeutic approaches for other diseases. Our review focuses on elucidating the molecular mechanism underlying disulphidptosis and its connection with the actin cytoskeleton, identifying alternative metabolic forms of cell death, as well as offering insights into disulphidptosis-based cancer therapy. A comprehensive understanding of disulphidptosis will contribute to our knowledge about fundamental cellular homeostasis and facilitate the development of groundbreaking therapies for disease treatment.
Collapse
Affiliation(s)
- Yanhu Li
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Haijun Zhang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
- The Second People's Hospital of Gansu Province, Lanzhou, PR China
| | - Fengguang Yang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Daxue Zhu
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Shijie Chen
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Zhaoheng Wang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Ziyan Wei
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Zhili Yang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Jingwen Jia
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Yizhi Zhang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Dongxin Wang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Mingdong Ma
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Xuewen Kang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| |
Collapse
|
2
|
Xiao F, Li HL, Yang B, Che H, Xu F, Li G, Zhou CH, Wang S. Disulfidptosis: A new type of cell death. Apoptosis 2024; 29:1309-1329. [PMID: 38886311 PMCID: PMC11416406 DOI: 10.1007/s10495-024-01989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
Disulfidptosis is a novel form of cell death that is distinguishable from established programmed cell death pathways such as apoptosis, pyroptosis, autophagy, ferroptosis, and oxeiptosis. This process is characterized by the rapid depletion of nicotinamide adenine dinucleotide phosphate (NADPH) in cells and high expression of solute carrier family 7 member 11 (SLC7A11) during glucose starvation, resulting in abnormal cystine accumulation, which subsequently induces andabnormal disulfide bond formation in actin cytoskeleton proteins, culminating in actin network collapse and disulfidptosis. This review aimed to summarize the underlying mechanisms, influencing factors, comparisons with traditional cell death pathways, associations with related diseases, application prospects, and future research directions related to disulfidptosis.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hui-Li Li
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Department of Emergency, The State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Bei Yang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hao Che
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Fei Xu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Gang Li
- Pediatric Cardiac Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Cheng-Hui Zhou
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Sheng Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Linzhi People's Hospital, Linzhi, Tibet, China.
| |
Collapse
|
3
|
Wang X, Lin J, Li Z, Wang M. In what area of biology has a "new" type of cell death been discovered? Biochim Biophys Acta Rev Cancer 2023; 1878:188955. [PMID: 37451411 DOI: 10.1016/j.bbcan.2023.188955] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Cell death is a fundamental physiological process that occurs in all organisms and is crucial to each organism's evolution, ability to maintain a stable internal environment, and the development of multiple organ systems. Disulfidptosis is a new mode of cell death that is triggered when cells with high expression of solute carrier family 7 member 11 (SLC7A11) are exposed to glucose starvation to initiate the process of cell death. The disulfidptosis mechanism is a programmed cell death mode that triggers cell death through reduction-oxidation (REDOX) reactions and disulfur bond formation. In disulfidptosis, disulfur bonds play a crucial role and cause the protein in the cell to undergo conformational changes, eventually leading to cell death. This mode of cell death has unique characteristics and regulatory mechanisms in comparison with other modes of cell death. In recent years, an increasing number of studies have shown that the disulfidptosis mechanism plays a key role in the occurrence and development of a variety of diseases. For example, cancer, cardiovascular diseases, neurodegenerative diseases, and liver diseases are all closely related to cell disulfidptosis mechanisms. Therefore, it is of paramount clinical significance to conduct in-depth research regarding this mechanism. This review summarizes the research progress on the disulfidptosis mechanism, including its discovery history, regulatory mechanism, related proteins, and signaling pathways. Potential applications of the disulfidptosis mechanism in disease therapy and future research directions are also discussed. This mechanism represents another subversive discovery after ferroptosis, and provides both a fresh perspective and an innovative strategy for the treatment of cancer, as well as inspiration for the treatment of other diseases.
Collapse
Affiliation(s)
- Xixi Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Junyi Lin
- Department of Cardiovascular Medicine, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Zhi Li
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| | - Minghua Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
4
|
Rawat M, Maupin-Furlow JA. Redox and Thiols in Archaea. Antioxidants (Basel) 2020; 9:antiox9050381. [PMID: 32380716 PMCID: PMC7278568 DOI: 10.3390/antiox9050381] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022] Open
Abstract
Low molecular weight (LMW) thiols have many functions in bacteria and eukarya, ranging from redox homeostasis to acting as cofactors in numerous reactions, including detoxification of xenobiotic compounds. The LMW thiol, glutathione (GSH), is found in eukaryotes and many species of bacteria. Analogues of GSH include the structurally different LMW thiols: bacillithiol, mycothiol, ergothioneine, and coenzyme A. Many advances have been made in understanding the diverse and multiple functions of GSH and GSH analogues in bacteria but much less is known about distribution and functions of GSH and its analogues in archaea, which constitute the third domain of life, occupying many niches, including those in extreme environments. Archaea are able to use many energy sources and have many unique metabolic reactions and as a result are major contributors to geochemical cycles. As LMW thiols are major players in cells, this review explores the distribution of thiols and their biochemistry in archaea.
Collapse
Affiliation(s)
- Mamta Rawat
- Biology Department, California State University, Fresno, CA 93740, USA
- Correspondence: (M.R.); (J.A.M.-F.)
| | - Julie A. Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- Correspondence: (M.R.); (J.A.M.-F.)
| |
Collapse
|
5
|
Ion BF, Meister PJ, Gauld JW. Multiscale Computational Study on the Catalytic Mechanism of the Nonmetallo Amidase Maleamate Amidohydrolase (NicF). J Phys Chem A 2019; 123:7710-7719. [DOI: 10.1021/acs.jpca.9b05914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bogdan F. Ion
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Paul J. Meister
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - James W. Gauld
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
6
|
Aboelnga MM, Hayward JJ, Gauld JW. Unraveling the Critical Role Played by Ado762'OH in the Post-Transfer Editing by Archaeal Threonyl-tRNA Synthetase. J Phys Chem B 2018; 122:1092-1101. [PMID: 29281289 DOI: 10.1021/acs.jpcb.7b10254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Archaeal threonyl-tRNA synthetase (ThrRS) possesses an editing active site wherein tRNAThr that has been misaminoacylated with serine (i.e., Ser-tRNAThr) is hydrolytically cleaved to serine and tRNAThr. It has been suggested that the free ribose sugar hydroxyl of Ado76 of the tRNAThr (Ado762'OH) is the mechanistic base, promoting hydrolysis by orienting a nucleophilic water near the scissile Ser-tRNAThr ester bond. We have performed a computational study, involving molecular dynamics (MD) and hybrid ONIOM quantum mechanics/molecular mechanics (QM/MM) methods, considering all possible editing mechanisms to gain an understanding of the role played by Ado762'OH group. More specifically, a range of concerted or stepwise mechanisms involving four-, six-, or eight-membered transition structures (total of seven mechanisms) were considered. In addition, these seven mechanisms were fully optimized using three different DFT functionals, namely, B3LYP, M06-2X, and M06-HF. The M06-HF functional gave the most feasible energy barriers followed by the M06-2X functional. The most favorable mechanism proceeds stepwise through two six-membered ring transition states in which the Ado762'OH group participates, overall, as a shuttle for the proton transfer from the nucleophilic H2O to the bridging oxygen (Ado763'O) of the substrate. More specifically, in the first step, which has a barrier of 25.9 kcal/mol, the Ado762'-OH group accepts a proton from the attacking nucleophilic water while concomitantly transferring its proton onto the substrates C-Ocarb center. Then, in the second step, which also proceeds with a barrier of 25.9 kcal/mol, the Ado762'-OH group transfers its proton on the adjacent Ado763'-oxygen, cleaving the scissile Ccarb-O3'Ado76 bond, while concomitantly accepting a proton from the previously formed C-OcarbH group.
Collapse
Affiliation(s)
- Mohamed M Aboelnga
- Department of Chemistry and Biochemistry, University of Windsor , Windsor, Ontario N9B 3P4, Canada.,Department of Chemistry, Faculty of Science, Damietta University , New Damietta, Damietta Governorate 34511, Egypt
| | - John J Hayward
- Department of Chemistry and Biochemistry, University of Windsor , Windsor, Ontario N9B 3P4, Canada
| | - James W Gauld
- Department of Chemistry and Biochemistry, University of Windsor , Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|