1
|
Sanbonmatsu K. Supercomputing in the biological sciences: Toward Zettascale and Yottascale simulations. Curr Opin Struct Biol 2024; 88:102889. [PMID: 39163795 DOI: 10.1016/j.sbi.2024.102889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024]
Abstract
Molecular simulations of biological systems tend to be significantly more compute-intensive than those in materials science and astrophysics, due to important contributions of long-range electrostatic forces and large numbers of time steps (>1E9) required. Simulations of biomolecular complexes of microseconds to milliseconds are considered state-of-the-art today. However, these time scales are miniscule in comparison to physiological time scales relevant to molecular machine activity, drug action, and elongation cycles for protein synthesis, RNA synthesis, and DNA synthesis (seconds to days). While an exascale supercomputer has simulated an entire virus for nanoseconds, this supercomputer would need to be 10 billion times faster to simulate that virus for 3 hours of physiological time, demonstrating the insatiable need for computing power. With growing interest in computational drug design from the pharmaceutical sector, the biological sciences are positioned to be an industry driver in computing.
Collapse
Affiliation(s)
- Karissa Sanbonmatsu
- Los Alamos National Laboratory, United States; New Mexico Consortium, New Mexico.
| |
Collapse
|
2
|
Liu S, Athreya A, Lao Z, Zhang B. From Nucleosomes to Compartments: Physicochemical Interactions Underlying Chromatin Organization. Annu Rev Biophys 2024; 53:221-245. [PMID: 38346246 PMCID: PMC11369498 DOI: 10.1146/annurev-biophys-030822-032650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Chromatin organization plays a critical role in cellular function by regulating access to genetic information. However, understanding chromatin folding is challenging due to its complex, multiscale nature. Significant progress has been made in studying in vitro systems, uncovering the structure of individual nucleosomes and their arrays, and elucidating the role of physicochemical forces in stabilizing these structures. Additionally, remarkable advancements have been achieved in characterizing chromatin organization in vivo, particularly at the whole-chromosome level, revealing important features such as chromatin loops, topologically associating domains, and nuclear compartments. However, bridging the gap between in vitro and in vivo studies remains challenging. The resemblance between in vitro and in vivo chromatin conformations and the relevance of internucleosomal interactions for chromatin folding in vivo are subjects of debate. This article reviews experimental and computational studies conducted at various length scales, highlighting the significance of intrinsic interactions between nucleosomes and their roles in chromatin folding in vivo.
Collapse
Affiliation(s)
- Shuming Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Advait Athreya
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Zhuohan Lao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
3
|
Wakim JG, Spakowitz AJ. Physical modeling of nucleosome clustering in euchromatin resulting from interactions between epigenetic reader proteins. Proc Natl Acad Sci U S A 2024; 121:e2317911121. [PMID: 38900792 PMCID: PMC11214050 DOI: 10.1073/pnas.2317911121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/15/2024] [Indexed: 06/22/2024] Open
Abstract
Euchromatin is an accessible phase of genetic material containing genes that encode proteins with increased expression levels. The structure of euchromatin in vitro has been described as a 30-nm fiber formed from ordered nucleosome arrays. However, recent advances in microscopy have revealed an in vivo euchromatin architecture that is much more disordered, characterized by variable-length linker DNA and sporadic nucleosome clusters. In this work, we develop a theoretical model to elucidate factors contributing to the disordered in vivo architecture of euchromatin. We begin by developing a 1D model of nucleosome positioning that captures the interactions between bound epigenetic reader proteins to predict the distribution of DNA linker lengths between adjacent nucleosomes. We then use the predicted linker lengths to construct 3D chromatin configurations consistent with the physical properties of DNA within the nucleosome array, and we evaluate the distribution of nucleosome cluster sizes in those configurations. Our model reproduces experimental cluster-size distributions, which are dramatically influenced by the local pattern of epigenetic marks and the concentration of reader proteins. Based on our model, we attribute the disordered arrangement of euchromatin to the heterogeneous binding of reader proteins and subsequent short-range interactions between bound reader proteins on adjacent nucleosomes. By replicating experimental results with our physics-based model, we propose a mechanism for euchromatin organization in the nucleus that impacts gene regulation and the maintenance of epigenetic marks.
Collapse
Affiliation(s)
- Joseph G. Wakim
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
| | - Andrew J. Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Materials Science and Engineering, Stanford University, Stanford, CA94305
- Biophysics Program, Stanford University, Stanford, CA94305
- Department of Applied Physics, Stanford University, Stanford, CA94305
| |
Collapse
|
4
|
Kohestani H, Wereszczynski J. The effects of RNA.DNA-DNA triple helices on nucleosome structures and dynamics. Biophys J 2023; 122:1229-1239. [PMID: 36798026 PMCID: PMC10111275 DOI: 10.1016/j.bpj.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 01/22/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Noncoding RNAs (ncRNAs) are an emerging epigenetic factor and have been recognized as playing a key role in many gene expression pathways. Structurally, binding of ncRNAs to isolated DNA is strongly dependent on sequence complementary and results in the formation of an RNA.DNA-DNA (RDD) triple helix. However, in vivo DNA is not isolated but is rather packed in chromatin fibers, the fundamental unit of which is the nucleosome. Biochemical experiments have shown that ncRNA binding to nucleosomal DNA is elevated at DNA entry and exit sites and is dependent on the presence of the H3 N-terminal tails. However, the structural and dynamical bases for these mechanisms remain unknown. Here, we have examined the mechanisms and effects of RDD formation in the context of the nucleosome using a series of all-atom molecular dynamics simulations. Results highlight the importance of DNA sequence on complex stability, elucidate the effects of the H3 tails on RDD structures, show how RDD formation impacts the structure and dynamics of the H3 tails, and show how RNA alters the local and global DNA double-helical structure. Together, our results suggest ncRNAs can modify nucleosome, and potentially higher-order chromatin, structures and dynamics as a means of exerting epigenetic control.
Collapse
Affiliation(s)
- Havva Kohestani
- Department of Biology, Illinois Institute of Technology, Chicago, Illinois
| | - Jeff Wereszczynski
- Departments of Physics & Biology, Illinois Institute of Technology, Chicago, Illinois.
| |
Collapse
|
5
|
Lu W, Onuchic JN, Di Pierro M. An associative memory Hamiltonian model for DNA and nucleosomes. PLoS Comput Biol 2023; 19:e1011013. [PMID: 36972316 PMCID: PMC10079229 DOI: 10.1371/journal.pcbi.1011013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/06/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
A model for DNA and nucleosomes is introduced with the goal of studying chromosomes from a single base level all the way to higher-order chromatin structures. This model, dubbed the Widely Editable Chromatin Model (WEChroM), reproduces the complex mechanics of the double helix including its bending persistence length and twisting persistence length, and their respective temperature dependence. The WEChroM Hamiltonian is composed of chain connectivity, steric interactions, and associative memory terms representing all remaining interactions leading to the structure, dynamics, and mechanical characteristics of the B-DNA. Several applications of this model are discussed to demonstrate its applicability. WEChroM is used to investigate the behavior of circular DNA in the presence of positive and negative supercoiling. We show that it recapitulates the formation of plectonemes and of structural defects that relax mechanical stress. The model spontaneously manifests an asymmetric behavior with respect to positive or negative supercoiling, similar to what was previously observed in experiments. Additionally, we show that the associative memory Hamiltonian is also capable of reproducing the free energy of partial DNA unwrapping from nucleosomes. WEChroM is designed to emulate the continuously variable mechanical properties of the 10nm fiber and, by virtue of its simplicity, is ready to be scaled up to molecular systems large enough to investigate the structural ensembles of genes. WEChroM is implemented in the OpenMM simulation toolkits and is freely available for public use.
Collapse
Affiliation(s)
- Weiqi Lu
- Center for Theoretical Biological Physics, & Department of Physics and Astronomy, Rice University, Houston, Texas, United States of America
| | - José N. Onuchic
- Center for Theoretical Biological Physics, & Department of Physics and Astronomy, Rice University, Houston, Texas, United States of America
- Department of Chemistry, & Department of Biosciences, Rice University, Houston, Texas, United States of America
- * E-mail: (JNO); (MDP)
| | - Michele Di Pierro
- Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts, United States of America
- * E-mail: (JNO); (MDP)
| |
Collapse
|
6
|
Generation of dynamic three-dimensional genome structure through phase separation of chromatin. Proc Natl Acad Sci U S A 2022; 119:e2109838119. [PMID: 35617433 PMCID: PMC9295772 DOI: 10.1073/pnas.2109838119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Significance DNA functions in living cells are crucially affected by the three-dimensional genome structure and dynamics. We analyze the whole genome of human cells by developing a polymer model of interphase nuclei. The model reveals the essential importance of the unfolding process of chromosomes from the condensed mitotic state for describing the interphase nuclei; through the unfolding process, heterogeneous repulsive interactions among chromatin chains induce phase separation of chromatin, which quantitatively explains the experimentally observed various genomic data. We can use this model structure as a platform to analyze the relationship among genome structure, dynamics, and functions.
Collapse
|
7
|
Itoh Y, Woods EJ, Minami K, Maeshima K, Collepardo-Guevara R. Liquid-like chromatin in the cell: What can we learn from imaging and computational modeling? Curr Opin Struct Biol 2021; 71:123-135. [PMID: 34303931 DOI: 10.1016/j.sbi.2021.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022]
Abstract
Chromatin in eukaryotic cells is a negatively charged long polymer consisting of DNA, histones, and various associated proteins. With its highly charged and heterogeneous nature, chromatin structure varies greatly depending on various factors (e.g. chemical modifications and protein enrichment) and the surrounding environment (e.g. cations): from a 10-nm fiber, a folded 30-nm fiber, to chromatin condensates/droplets. Recent advanced imaging has observed that chromatin exhibits a dynamic liquid-like behavior and undergoes structural variations within the cell. Current computational modeling has made it possible to reconstruct the liquid-like chromatin in the cell by dealing with a number of nucleosomes on multiscale levels and has become a powerful technique to inspect the molecular mechanisms giving rise to the observed behavior, which imaging methods cannot do on their own. Based on new findings from both imaging and modeling studies, we discuss the dynamic aspect of chromatin in living cells and its functional relevance.
Collapse
Affiliation(s)
- Yuji Itoh
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Esmae J Woods
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Katsuhiko Minami
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan.
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK; Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
| |
Collapse
|
8
|
Mimura M, Tomita S, Shinkai Y, Hosokai T, Kumeta H, Saio T, Shiraki K, Kurita R. Quadruplex Folding Promotes the Condensation of Linker Histones and DNAs via Liquid-Liquid Phase Separation. J Am Chem Soc 2021; 143:9849-9857. [PMID: 34152774 DOI: 10.1021/jacs.1c03447] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Liquid-liquid phase separation (LLPS) of proteins and DNA has recently emerged as a possible mechanism underlying the dynamic organization of chromatin. We herein report the role of DNA quadruplex folding in liquid droplet formation via LLPS induced by interactions between DNA and linker histone H1 (H1), a key regulator of chromatin organization. Fluidity measurements inside the droplets, binding assays using G-quadruplex-selective probes, and structural analyses based on circular dichroism demonstrated that quadruplex DNA structures, such as the G-quadruplex and i-motif, promote droplet formation with H1 and decrease molecular motility within droplets. The dissolution of the droplets in the presence of additives and the LLPS of the DNA structural units indicated that, in addition to electrostatic interactions between the DNA and the intrinsically disordered region of H1, π-π stacking between quadruplex DNAs could potentially drive droplet formation, unlike in the electrostatically driven LLPS of duplex DNA and H1. According to phase diagrams of anionic molecules with various conformations, the high LLPS ability associated with quadruplex folding arises from the formation of interfaces consisting of organized planes of guanine bases and the side surfaces with a high charge density. Given that DNA quadruplex structures are well-documented in heterochromatin regions, it is imperative to understand the role of DNA quadruplex folding in the context of intranuclear LLPS.
Collapse
Affiliation(s)
- Masahiro Mimura
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.,Health and Medical Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Shunsuke Tomita
- Health and Medical Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yoichi Shinkai
- Biomedical Research Institute, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Takuya Hosokai
- National Metrology Institute, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Hiroyuki Kumeta
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Tomohide Saio
- Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Ryoji Kurita
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.,Health and Medical Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.,DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
9
|
Farr SE, Woods EJ, Joseph JA, Garaizar A, Collepardo-Guevara R. Nucleosome plasticity is a critical element of chromatin liquid-liquid phase separation and multivalent nucleosome interactions. Nat Commun 2021; 12:2883. [PMID: 34001913 PMCID: PMC8129070 DOI: 10.1038/s41467-021-23090-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) is an important mechanism that helps explain the membraneless compartmentalization of the nucleus. Because chromatin compaction and LLPS are collective phenomena, linking their modulation to the physicochemical features of nucleosomes is challenging. Here, we develop an advanced multiscale chromatin model-integrating atomistic representations, a chemically-specific coarse-grained model, and a minimal model-to resolve individual nucleosomes within sub-Mb chromatin domains and phase-separated systems. To overcome the difficulty of sampling chromatin at high resolution, we devise a transferable enhanced-sampling Debye-length replica-exchange molecular dynamics approach. We find that nucleosome thermal fluctuations become significant at physiological salt concentrations and destabilize the 30-nm fiber. Our simulations show that nucleosome breathing favors stochastic folding of chromatin and promotes LLPS by simultaneously boosting the transient nature and heterogeneity of nucleosome-nucleosome contacts, and the effective nucleosome valency. Our work puts forward the intrinsic plasticity of nucleosomes as a key element in the liquid-like behavior of nucleosomes within chromatin, and the regulation of chromatin LLPS.
Collapse
Affiliation(s)
- Stephen E Farr
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Esmae J Woods
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Jerelle A Joseph
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Department of Genetics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Wu H, Dalal Y, Papoian GA. Binding Dynamics of Disordered Linker Histone H1 with a Nucleosomal Particle. J Mol Biol 2021; 433:166881. [PMID: 33617899 DOI: 10.1016/j.jmb.2021.166881] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/30/2023]
Abstract
Linker histone H1 is an essential regulatory protein for many critical biological processes, such as eukaryotic chromatin packaging and gene expression. Mis-regulation of H1s is commonly observed in tumor cells, where the balance between different H1 subtypes has been shown to alter the cancer phenotype. Consisting of a rigid globular domain and two highly charged terminal domains, H1 can bind to multiple sites on a nucleosomal particle to alter chromatin hierarchical condensation levels. In particular, the disordered H1 amino- and carboxyl-terminal domains (NTD/CTD) are believed to enhance this binding affinity, but their detailed dynamics and functions remain unclear. In this work, we used a coarse-grained computational model, AWSEM-DNA, to simulate the H1.0b-nucleosome complex, namely chromatosome. Our results demonstrate that H1 disordered domains restrict the dynamics and conformation of both globular H1 and linker DNA arms, resulting in a more compact and rigid chromatosome particle. Furthermore, we identified regions of H1 disordered domains that are tightly tethered to DNA near the entry-exit site. Overall, our study elucidates at near-atomic resolution the way the disordered linker histone H1 modulates nucleosome's structural preferences and conformational dynamics.
Collapse
Affiliation(s)
- Hao Wu
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Garegin A Papoian
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States; Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
11
|
Ding X, Lin X, Zhang B. Stability and folding pathways of tetra-nucleosome from six-dimensional free energy surface. Nat Commun 2021; 12:1091. [PMID: 33597548 PMCID: PMC7889939 DOI: 10.1038/s41467-021-21377-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 01/22/2021] [Indexed: 01/01/2023] Open
Abstract
The three-dimensional organization of chromatin is expected to play critical roles in regulating genome functions. High-resolution characterization of its structure and dynamics could improve our understanding of gene regulation mechanisms but has remained challenging. Using a near-atomistic model that preserves the chemical specificity of protein-DNA interactions at residue and base-pair resolution, we studied the stability and folding pathways of a tetra-nucleosome. Dynamical simulations performed with an advanced sampling technique uncovered multiple pathways that connect open chromatin configurations with the zigzag crystal structure. Intermediate states along the simulated folding pathways resemble chromatin configurations reported from in situ experiments. We further determined a six-dimensional free energy surface as a function of the inter-nucleosome distances via a deep learning approach. The zigzag structure can indeed be seen as the global minimum of the surface. However, it is not favored by a significant amount relative to the partially unfolded, in situ configurations. Chemical perturbations such as histone H4 tail acetylation and thermal fluctuations can further tilt the energetic balance to stabilize intermediate states. Our study provides insight into the connection between various reported chromatin configurations and has implications on the in situ relevance of the 30 nm fiber. The three-dimensional organization of chromatin plays critical roles in regulating genome function. Here the authors apply a near atomistic model to study the structure and dynamics of the chromatin folding unit - the tetra-nucleosome - to provide insight into how chromatin folds.
Collapse
Affiliation(s)
- Xinqiang Ding
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
12
|
Computation of FRAP recovery times for linker histone – chromatin binding on the basis of Brownian dynamics simulations. Biochim Biophys Acta Gen Subj 2020; 1864:129653. [DOI: 10.1016/j.bbagen.2020.129653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/22/2020] [Accepted: 05/28/2020] [Indexed: 11/22/2022]
|
13
|
Emergence of chromatin hierarchical loops from protein disorder and nucleosome asymmetry. Proc Natl Acad Sci U S A 2020; 117:7216-7224. [PMID: 32165536 DOI: 10.1073/pnas.1910044117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Protein flexibility and disorder is emerging as a crucial modulator of chromatin structure. Histone tail disorder enables transient binding of different molecules to the nucleosomes, thereby promoting heterogeneous and dynamic internucleosome interactions and making possible recruitment of a wide-range of regulatory and remodeling proteins. On the basis of extensive multiscale modeling we reveal the importance of linker histone H1 protein disorder for chromatin hierarchical looping. Our multiscale approach bridges microsecond-long bias-exchange metadynamics molecular dynamics simulations of atomistic 211-bp nucleosomes with coarse-grained Monte Carlo simulations of 100-nucleosome systems. We show that the long C-terminal domain (CTD) of H1-a ubiquitous nucleosome-binding protein-remains disordered when bound to the nucleosome. Notably, such CTD disorder leads to an asymmetric and dynamical nucleosome conformation that promotes chromatin structural flexibility and establishes long-range hierarchical loops. Furthermore, the degree of condensation and flexibility of H1 can be fine-tuned, explaining chromosomal differences of interphase versus metaphase states that correspond to partial and hyperphosphorylated H1, respectively. This important role of H1 protein disorder in large-scale chromatin organization has a wide range of biological implications.
Collapse
|
14
|
Öztürk MA, De M, Cojocaru V, Wade RC. Chromatosome Structure and Dynamics from Molecular Simulations. Annu Rev Phys Chem 2020; 71:101-119. [PMID: 32017651 DOI: 10.1146/annurev-physchem-071119-040043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromatosomes are fundamental units of chromatin structure that are formed when a linker histone protein binds to a nucleosome. The positioning of the linker histone on the nucleosome influences the packing of chromatin. Recent simulations and experiments have shown that chromatosomes adopt an ensemble of structures that differ in the geometry of the linker histone-nucleosome interaction. In this article we review the application of Brownian, Monte Carlo, and molecular dynamics simulations to predict the structure of linker histone-nucleosome complexes, to study the binding mechanisms involved, and to predict how this binding affects chromatin fiber structure. These simulations have revealed the sensitivityof the chromatosome structure to variations in DNA and linker histone sequence, as well as to posttranslational modifications, thereby explaining the structural variability observed in experiments. We propose that a concerted application of experimental and computational approaches will reveal the determinants of chromatosome structural variability and how it impacts chromatin packing.
Collapse
Affiliation(s)
- Mehmet Ali Öztürk
- Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany;
| | - Madhura De
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany; .,Department of Biophysics of Macromolecules, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; .,Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Vlad Cojocaru
- In Silico Biomolecular Structure and Dynamics, Hubrecht Institute, 3584 CT Utrecht, The Netherlands; .,Computational Structural Biology Group, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany; .,Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany.,Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing (IWR), 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Perišić O, Portillo-Ledesma S, Schlick T. Sensitive effect of linker histone binding mode and subtype on chromatin condensation. Nucleic Acids Res 2019; 47:4948-4957. [PMID: 30968131 PMCID: PMC6547455 DOI: 10.1093/nar/gkz234] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022] Open
Abstract
The complex role of linker histone (LH) on chromatin compaction regulation has been highlighted by recent discoveries of the effect of LH binding variability and isoforms on genome structure and function. Here we examine the effect of two LH variants and variable binding modes on the structure of chromatin fibers. Our mesoscale modeling considers oligonucleosomes with H1C and H1E, bound in three different on and off-dyad modes, and spanning different LH densities (0.5–1.6 per nucleosome), over a wide range of physiologically relevant nucleosome repeat lengths (NRLs). Our studies reveal an LH-variant and binding-mode dependent heterogeneous ensemble of fiber structures with variable packing ratios, sedimentation coefficients, and persistence lengths. For maximal compaction, besides dominantly interacting with parental DNA, LHs must have strong interactions with nonparental DNA and promote tail/nonparental core interactions. An off-dyad binding of H1E enables both; others compromise compaction for bendability. We also find that an increase of LH density beyond 1 is best accommodated in chromatosomes with one on-dyad and one off-dyad LH. We suggest that variable LH binding modes and concentrations are advantageous, allowing tunable levels of chromatin condensation and DNA accessibility/interactions. Thus, LHs add another level of epigenetic regulation of chromatin.
Collapse
Affiliation(s)
- Ognjen Perišić
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, NY 10003, USA
| | - Stephanie Portillo-Ledesma
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, NY 10003, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, NY 10003, USA.,Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA.,New York University ECNU - Center for Computational Chemistry at NYU Shanghai, 3663 North Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
16
|
Perry CC, Ramos-Méndez J, Milligan JR. DNA Condensation with a Boron-Containing Cationic Peptide for Modeling Boron Neutron Capture Therapy. Radiat Phys Chem Oxf Engl 1993 2019; 166. [PMID: 32454570 DOI: 10.1016/j.radphyschem.2019.108521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The amino acid derivative 4-borono-L-phenylalanine (BPA) has been used in the radiation medicine technique boron neutron capture therapy (BNCT). Here we have characterized its interaction with DNA when incorporated into a positively charged hexa-L-arginine peptide. This ligand binds strongly to DNA and induces its condensation, an effect which is attenuated at higher ionic strengths. The use of an additional tetra-L-arginine ligand enables the preparation of a DNA condensate in the presence of a negligible concentration of unbound boron. Under these conditions, Monte Carlo simulation indicates that >85% of energy deposition events resulting from thermal neutron irradiation derive from boron fission. The combination of experimental model systems and simulations that we describe here provides a valuable tool for accurate track structure modeling of the DNA damage produced by the high LET particles involved in BNCT.
Collapse
Affiliation(s)
- Chris C Perry
- Department of Basic Sciences, School of Medicine, Loma Linda University, 11085 Campus Street, Loma Linda, CA 92350, USA
| | - Jose Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, San Francisco, CA 94115, USA
| | - Jamie R Milligan
- Department of Basic Sciences, School of Medicine, Loma Linda University, 11085 Campus Street, Loma Linda, CA 92350, USA
| |
Collapse
|
17
|
Kanada R, Terakawa T, Kenzaki H, Takada S. Nucleosome Crowding in Chromatin Slows the Diffusion but Can Promote Target Search of Proteins. Biophys J 2019; 116:2285-2295. [PMID: 31151739 DOI: 10.1016/j.bpj.2019.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/15/2019] [Accepted: 05/01/2019] [Indexed: 01/05/2023] Open
Abstract
Dynamics of nuclear proteins in crowded chromatin has only been poorly understood. Here, we address the diffusion, target search, and structural dynamics of three proteins in a model chromatin using coarse-grained molecular simulations run on the K computer. We prepared two structures of chromatin made of 20 nucleosomes with different nucleosome densities and investigated dynamics of two transcription factors, HMGB1 and p53, and one signaling protein, ERK, embedded in the chromatin. We found fast and normal diffusion of the nuclear proteins in the low-density chromatins and slow and subdiffusional movements in the high-density chromatin. The diffusion of the largest transcription factor, p53, is slowed by high-density chromatin most markedly. The on rates and off rates for DNA binding are increased and decreased, respectively, in the high-density chromatin. To our surprise, the DNA sequence search was faster in chromatin with high nucleosome density, though the diffusion is slower. We also found that the three nuclear proteins preferred to bind on the linker DNA and the entry and exit regions of nucleosomal DNA. In addition to these regions, HMGB1 and p53 also bound to the dyad.
Collapse
Affiliation(s)
- Ryo Kanada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan; Compass to Healthy Life Research Complex Program, Cluster for Science, Technology and Innovation Hub, RIKEN, Kobe, Japan
| | - Tsuyoshi Terakawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hiroo Kenzaki
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan; Information Systems Division, Head Office for Information Systems and Cybersecurity, RIKEN, Saitama, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
18
|
Garcia-Saez I, Menoni H, Boopathi R, Shukla MS, Soueidan L, Noirclerc-Savoye M, Le Roy A, Skoufias DA, Bednar J, Hamiche A, Angelov D, Petosa C, Dimitrov S. Structure of an H1-Bound 6-Nucleosome Array Reveals an Untwisted Two-Start Chromatin Fiber Conformation. Mol Cell 2018; 72:902-915.e7. [PMID: 30392928 DOI: 10.1016/j.molcel.2018.09.027] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/27/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022]
Abstract
Chromatin adopts a diversity of regular and irregular fiber structures in vitro and in vivo. However, how an array of nucleosomes folds into and switches between different fiber conformations is poorly understood. We report the 9.7 Å resolution crystal structure of a 6-nucleosome array bound to linker histone H1 determined under ionic conditions that favor incomplete chromatin condensation. The structure reveals a flat two-start helix with uniform nucleosomal stacking interfaces and a nucleosome packing density that is only half that of a twisted 30-nm fiber. Hydroxyl radical footprinting indicates that H1 binds the array in an on-dyad configuration resembling that observed for mononucleosomes. Biophysical, cryo-EM, and crosslinking data validate the crystal structure and reveal that a minor change in ionic environment shifts the conformational landscape to a more compact, twisted form. These findings provide insights into the structural plasticity of chromatin and suggest a possible assembly pathway for a 30-nm fiber.
Collapse
Affiliation(s)
- Isabel Garcia-Saez
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Hervé Menoni
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700 La Tronche, France; Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule LBMC, 46 Allée d'Italie, 69007 Lyon, France
| | - Ramachandran Boopathi
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700 La Tronche, France; Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule LBMC, 46 Allée d'Italie, 69007 Lyon, France
| | - Manu S Shukla
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700 La Tronche, France; Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule LBMC, 46 Allée d'Italie, 69007 Lyon, France
| | - Lama Soueidan
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700 La Tronche, France; Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule LBMC, 46 Allée d'Italie, 69007 Lyon, France
| | | | - Aline Le Roy
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Dimitrios A Skoufias
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Jan Bednar
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700 La Tronche, France; Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague 2, Czech Republic.
| | - Ali Hamiche
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS, INSERM, 67404 Illkirch Cedex, France.
| | - Dimitar Angelov
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule LBMC, 46 Allée d'Italie, 69007 Lyon, France.
| | - Carlo Petosa
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.
| | - Stefan Dimitrov
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700 La Tronche, France; "Roumen Tsanev" Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
19
|
Öztürk MA, Cojocaru V, Wade RC. Toward an Ensemble View of Chromatosome Structure: A Paradigm Shift from One to Many. Structure 2018; 26:1050-1057. [PMID: 29937356 DOI: 10.1016/j.str.2018.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/31/2018] [Accepted: 05/15/2018] [Indexed: 11/29/2022]
Abstract
There is renewed interest in linker histone (LH)-nucleosome binding and how LHs influence eukaryotic DNA compaction. For a long time, the goal was to uncover "the structure of the chromatosome," but recent studies of LH-nucleosome complexes have revealed an ensemble of structures. Notably, the reconstituted LH-nucleosome complexes used in experiments rarely correspond to the sequence combinations present in organisms. For a full understanding of the determinants of the distribution of the chromatosome structural ensemble, studies must include a complete description of the sequences and experimental conditions used, and be designed to enable systematic evaluation of sequence and environmental effects.
Collapse
Affiliation(s)
- Mehmet Ali Öztürk
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany; The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), Heidelberg University, 69120 Heidelberg, Germany
| | - Vlad Cojocaru
- Computational Structural Biology Laboratory, Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany; Center for Multiscale Theory and Computation, Westfälische Wilhelms University, 48149 Münster, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany; Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), 69120 Heidelberg, Germany.
| |
Collapse
|
20
|
Watanabe S, Mishima Y, Shimizu M, Suetake I, Takada S. Interactions of HP1 Bound to H3K9me3 Dinucleosome by Molecular Simulations and Biochemical Assays. Biophys J 2018; 114:2336-2351. [PMID: 29685391 PMCID: PMC6129468 DOI: 10.1016/j.bpj.2018.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/27/2018] [Accepted: 03/26/2018] [Indexed: 01/01/2023] Open
Abstract
Heterochromatin protein 1 (HP1), associated with heterochromatin formation, recognizes an epigenetically repressive marker, trimethylated lysine 9 in histone H3 (H3K9me3), and generally contributes to long-term silencing. How HP1 induces heterochromatin is not fully understood. Recent experiments suggested that not one, but two nucleosomes provide a platform for this recognition. Integrating previous and new biochemical assays with computational modeling, we provide near-atomic structural models for HP1 binding to the dinucleosomes. We found that the dimeric HP1α tends to bind two H3K9me3s that are in adjacent nucleosomes, thus bridging two nucleosomes. We identified, to our knowledge, a novel DNA binding motif in the hinge region that is specific to HP1α and is essential for recognizing the H3K9me3 sites of two nucleosomes. An HP1 isoform, HP1γ, does not easily bridge two nucleosomes in extended conformations because of the absence of the above binding motif and its shorter hinge region. We propose a molecular mechanism for chromatin structural changes caused by HP1.
Collapse
Affiliation(s)
- Shuhei Watanabe
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Japan
| | - Yuichi Mishima
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Masahiro Shimizu
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Japan
| | - Isao Suetake
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan; College of Nutrition, Koshien University, Takarazuka, Japan.
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Japan.
| |
Collapse
|
21
|
Öztürk MA, Cojocaru V, Wade RC. Dependence of Chromatosome Structure on Linker Histone Sequence and Posttranslational Modification. Biophys J 2018; 114:2363-2375. [PMID: 29759374 PMCID: PMC6129471 DOI: 10.1016/j.bpj.2018.04.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/18/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022] Open
Abstract
Linker histone (LH) proteins play a key role in higher-order structuring of chromatin for the packing of DNA in eukaryotic cells and in the regulation of genomic function. The common fruit fly (Drosophila melanogaster) has a single somatic isoform of the LH (H1). It is thus a useful model organism for investigating the effects of the LH on nucleosome compaction and the structure of the chromatosome, the complex formed by binding of an LH to a nucleosome. The structural and mechanistic details of how LH proteins bind to nucleosomes are debated. Here, we apply Brownian dynamics simulations to compare the nucleosome binding of the globular domain of D. melanogaster H1 (gH1) and the corresponding chicken (Gallus gallus) LH isoform, gH5, to identify residues in the LH that critically affect the structure of the chromatosome. Moreover, we investigate the effects of posttranslational modifications on the gH1 binding mode. We find that certain single-point mutations and posttranslational modifications of the LH proteins can significantly affect chromatosome structure. These findings indicate that even subtle differences in LH sequence can significantly shift the chromatosome structural ensemble and thus have implications for chromatin structure and transcriptional regulation.
Collapse
Affiliation(s)
- Mehmet Ali Öztürk
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany; The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology, Heidelberg University, Heidelberg, Germany
| | - Vlad Cojocaru
- Computational Structural Biology Laboratory, Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany; Center for Multiscale Theory and Computation, Westfälische Wilhelms University, Münster, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany; Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg, Germany.
| |
Collapse
|